期刊文献+

分段状态约束非线性预测控制数值算法研究 被引量:1

Research on numerical algorithms for nonlinear predictive control problems based on segmented state constraints
下载PDF
导出
摘要 针对含分段状态约束的非线性预测控制问题,在状态约束隐式法基础上提出了一种改进的快速数值算法。通过平滑处理将分段状态约束转化为与目标函数相同的正则形式,转化后的状态约束连续可微,从而可以由相同Hamiltonian方法计算目标函数和状态约束函数对控制参数的一阶导数。仿真结果表明,状态转换法能够求解双足机器人非线性预测控制问题。与惩罚函数法相比,状态转换法寻优时间短,数值最优解是所有约束范围的内点,从而证明了该方法的有效性。 To solve nonlinear model predictive control(NMPC) problems based on segmented state constraints, an improved quick numerical method is proposed. Through smoothing process, the segmented state constraints are transformed into the same canonical form as the cost function, which is continuous and differential. Thus the first order derivative of both the cost function and state constraints with respect to control parameters can be computed by same Hamiltonian method. Simulation results show that the state transformation method could tackle the NMPC problem of biped robots. Compared with the penalty function method, the state transformation method needs less computational time, and the computed optimal solution is the inner point of restricted regions, thus verifying the effectiveness of this method.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2009年第6期1436-1440,共5页 Systems Engineering and Electronics
基金 国家高技术研究发展计划(863项目)资助课题(2006AA04Z201)
关键词 非线性预测控制 数值算法 渐进二次规划 分段状态约束 nonlinear model predictive control numerical algorithm sequential quadratic programming segmented state constraint
  • 相关文献

参考文献10

  • 1Findeisen R, Allgower F. An introduction to nonlinear model predictive control[C]//21st Benelux Meeting on Systems and Control, 2002.
  • 2Findeisen R, Raff T, Allgower F. Sampled-data nonlinear model predictive control for constrained continuous time systems[A]. Advanced strategies in control systems with input and output constraints, lecture notes in control and information sciences [M]. Berlin: springer, 2007, 346:207- 235.
  • 3Bessonnet G, Chesse S, Sardain P. Optimal gait synthesis of a seven-link planar biped[J].International Journal of Robotics Research, 2004, 23: 1059-1073.
  • 4Holsapple R, Venkataraman R, Doman D. A modified simple shooting method for solving two-point boundary-value problems[C]// Proc. of IEEE Aerospace Conference, 2003:62783 - 62790.
  • 5Biegler L. Efficient solution of dynamic optimization and NMPC problems[A]. Nonlinear predictive control[M]. Birkhauser, 2000: 219-244.
  • 6Wang W, Sanei S, Chambers J A. Penalty function-based joint diagonalization approach for convolutive blind separation of non-stationary sources[J].IEEE Trans. on Signal Processing, 2005, 53(5): 1654-1669.
  • 7Biegler L T, Cervantes A M, Wachter A. Advances in simultaneous strategies for dynamic process optimization[J]. Chemical Engineering Science, 2002, 57(4) : 575 - 593.
  • 8Jennings L S, Teo K L. A computational algorithm for functional inequality constrained optimization problems [J]. Automatica, 1990, 26:371-375.
  • 9Christine A, Philippe P, Bernard E. Artificial locomotion control: from human to robots [J]. Robotics and Autonomous Systems, 2004, 47:203-223.
  • 10Jennings L S, Fisher M E, Teo K L, et al. MISER3 version 3, optimal control software, theory and user manual[EB/OL]. School of Mathematics and Statistics, University of Western Australia. http:// cado. maths. uwa. edu.au/miser/manual. html, 2004.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部