期刊文献+

光滑支持向量机多项式函数的研究 被引量:9

Research on polynomial functions for smoothing support vector machines
下载PDF
导出
摘要 为了找到多项式光滑支持向量机(polynomial smooth support vector machine,PSSVM)中性能更好的光滑函数,将正号函数变形并展开为多项式级数,得到一类光滑函数。证明了这类函数的性能,它既能满足任意阶光滑的要求,也能达到任意给定的逼近精度。用Newton-Armijo算法求解相应的PSSVM模型,实验结果表明,随着多项式光滑函数阶数的提高,逼近精度和相应PSSVM模型的分类性能也相应提高。 To find smoothing functions with good performance, a plus function is transformed into an equivalent infinite series, thus deriving a class of polynomial smoothing functions. The important properties of them are discussed. It is shown that the approximation accuracy and smoothing rank of polynomial functions can be as high as required. The Newton-Armijo algorithm is used to solve the polynomial smooth support vector machine (PSSVM) finally. The experimental results show that as the smoothing rank of polynomial functions increases, the approximation accuracy and the classification performance of the PSSVM mode are correspondingly improved.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2009年第6期1450-1453,共4页 Systems Engineering and Electronics
基金 国家自然科学基金项目资助课题(60574075)
关键词 支持向量机 分类 光滑 逼近 多项式函数 support vector machine classification smoothing approximation polynomial function
  • 相关文献

参考文献9

  • 1Chen C, Mangasarian O L. A class of smoothing functions for nonlinear and mixed complementarity problems[J]. Computational Optimization and Applications, 1996,5(2):97 - 138.
  • 2Lee Y J, Mangasarian O L. SSVM: A smooth support vector machine for classification[J].Computational Optimization and Applications ,2001,22(1) :5 - 21.
  • 3Joachims T. Making large-scale support vector machine learning practical[C] //Advances in Kernel Methods-Support Vector Learning, Cambridge, MA :MIT Press, 1999:169 - 184.
  • 4Mangasarian O L,Musicant D R. Successive overrelaxation for support vector machines [J]. IEEE Trans. on Neural Networks ,1999,10(8) : 1032 - 1037.
  • 5Platt J. Sequential minimal optimization: A fast algorithm for training support vector machines[C] //Advances in Kernel Methods-Support Vector Learning, Cambridge, MA: MIT Press, 1999 : 185 - 208.
  • 6袁玉波,严杰,徐成贤.多项式光滑的支撑向量机[J].计算机学报,2005,28(1):9-17. 被引量:81
  • 7熊金志,胡金莲,袁华强,胡天明,李广明.一类光滑支持向量机新函数的研究[J].电子学报,2007,35(2):366-370. 被引量:42
  • 8Mangasarian O L, Musicant D R. Successive overrelaxation for support vector machines[J].IEEE Trans. on Neural Networks, 1999,10 (8):1032 - 1037.
  • 9莫国端,刘开第.函数逼近论方法[M].2版.北京:科学出版社,2004.

二级参考文献11

  • 1袁玉波,严杰,徐成贤.多项式光滑的支撑向量机[J].计算机学报,2005,28(1):9-17. 被引量:81
  • 2C Chen, O L Mangasarian. A class of smoothing functions for nonlinear and mixed complementarity problems [ J ]. Computational Optimization and Application, 1996,5:97- 138.
  • 3C Chen,O L Mangasarian. Smoothing methods for convex inequalities and linear complementarity problems[ J]. Mathematical Programming, 1995,71:51 - 69.
  • 4O L Mangasarian.Mathematical programming in meural networks [J]ORSA Journal on Computing, 1993,5(4) :349 - 360.
  • 5Y J Lee,O L Mangasarian.SSVM:A smooth support vector machine for classification[ J]. Computational Optimization and Applications,2001,22(1):5 - 21.
  • 6Y J Lee,W F Hsieh, C M Huang. ε-SSVR:A smooth support vector machine for E-insensitive regression[ J]. IEEE Transactions on Knowledge and Data Engineering,2005,17(5):5 - 22.
  • 7J Platt. Sequential minimal optimization: A fast algorithm for training support vector machines [ A]. Advances in Kemel Methods-Support Vector Learning[ C]. Cambridge, MA: MTT Press, 1999.185 -208.
  • 8T Jonchims. Making large-scale support vector machine learning practical[ A ]. Advances in Kernel Methods-Support Vector Learning[ C]. Cambridge, MA:MIT Press, 1999.169 - 184.
  • 9O L Mangasarian, D R Musicant. Successive overrelaxation for support vector machines[ J]. IEEE Transactions on Neural Networks, 1999,10(8) : 1032 - 1037.
  • 10Shu-ma Lu, Xi-zhao Wang. A comparison among four SVM classification methods: LSVM, NLSVM, SSVM and NSVM [A ]. Proceedings of the Third International Conference on Machine Leaming and Cybernetics [ C ]. shanghai, 2004. 4277- 4282.

共引文献88

同被引文献59

引证文献9

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部