期刊文献+

MOCVD growth of AlGaInP/GaInP quantum well laser diode with asymmetric cladding structure for high power applications 被引量:2

MOCVD growth of AlGaInP/GaInP quantum well laser diode with asymmetric cladding structure for high power applications
原文传递
导出
摘要 In order to improve the characteristics of the general broad-waveguide 808-nm semiconductor laser diode (LD), we design a new type quantum well LD with an asymmetric cladding structure. The structure is grown by metal organic chemical vapor deposition (MOCVD). For the devices with 100-ttm-wide stripe and 1000-/zm-long cavity under continuous-wave (CW) operation condition, the typical threshold current is 190 mA, the slope efficiency is 1.31 W/A, the wall-plug efficiency reaches 63%, and the maximum output power reaches higher than 7 W. And the internal absorption value decreases to 1.5 cm^-1. In order to improve the characteristics of the general broad-waveguide 808-nm semiconductor laser diode (LD), we design a new type quantum well LD with an asymmetric cladding structure. The structure is grown by metal organic chemical vapor deposition (MOCVD). For the devices with 100-ttm-wide stripe and 1000-/zm-long cavity under continuous-wave (CW) operation condition, the typical threshold current is 190 mA, the slope efficiency is 1.31 W/A, the wall-plug efficiency reaches 63%, and the maximum output power reaches higher than 7 W. And the internal absorption value decreases to 1.5 cm^-1.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2009年第6期489-491,共3页 中国光学快报(英文版)
基金 supported by the National Natural Science Foundation of China (No.50472068) the Program for New Century Excellent Talents in University
  • 相关文献

参考文献11

  • 1J. K. Wade, L. J. Mawst, D. Botez, and J. A. Morris, Electron. Lett. 34, 1100 (1998).
  • 2F. Dittmar, B. Sumpf, J. Fricke, G. Erbert, and G. Trankle, IEEE Photon. Technol. Lett. 18, 601 (2006).
  • 3G. Fang, X. Ma, G. Wang, M. Tan, and Y. Lan, Chinese J. Lasers (in Chinese) 31, 649 (2004).
  • 4J. Li, J. Han, J. Deng, D. Zou, and G. Shen, Chinese J. Lasers (in Chinese) 33. 1159 (2006).
  • 5D. Botez, Appl. Phys. Lett. 74, 3102 (1999).
  • 6M. Buda, W. C. van der Vleuten, Gh. Iordache, G. A. Acket, T. G. van de Roer, C. M. van Es, B. H. van Roy, and E. Smalbrugge, IEEE Photon. Technol. Lett. 11, 161 (1999).
  • 7K. Shigihara, K. Kawasaki, Y. Yoshida, S. Yamamura, T. Y-agi, and E. Omura, IEEE J. Quantum Electron. 38, 1081 (2002).
  • 8J. J. Lee, L. J. Mawst, and D. Botez, J. Cryst. Growth 249, 100 (2003).
  • 9L. Zhong, J. Wang, X. Feng, Y. Wang, C. Wang, L. Han, F. Chong, S. Liu, and X. Ma, Chinese J. Lasers (in Chinese) 34, 1037 (2007).
  • 10G. Xin, R. Qu, Z. Fang, and G. Chen, Laser Optoelectron. Prog. (in Chinese) 43, (2) 3 (2006).

同被引文献8

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部