期刊文献+

Multi-wavelength photonic band gaps based on quasi-periodically poled lithium niobate ordered in Fibonacci sequences

Multi-wavelength photonic band gaps based on quasi-periodically poled lithium niobate ordered in Fibonacci sequences
原文传递
导出
摘要 We demonstrate a quasi-periodic structure exhibiting multiple photonic band gaps (PBGs) based on sub- micron-period poled lithium niobate (LN). The structure consists of two building blocks, each containing a pair of antiparallel poled domains, arranged as a Fibonacci sequence. The gap wavelengths are analyzed with the Fibonacci sequence parameters such as the quasiperiodic indices and the average lattice parameter. The transmission properties are investigated by a traditional 4×4 matrix method. It has also been proved that the gap depth can be tuned by the lengths of poled domains. We demonstrate a quasi-periodic structure exhibiting multiple photonic band gaps (PBGs) based on sub- micron-period poled lithium niobate (LN). The structure consists of two building blocks, each containing a pair of antiparallel poled domains, arranged as a Fibonacci sequence. The gap wavelengths are analyzed with the Fibonacci sequence parameters such as the quasiperiodic indices and the average lattice parameter. The transmission properties are investigated by a traditional 4×4 matrix method. It has also been proved that the gap depth can be tuned by the lengths of poled domains.
机构地区 Department of Physics
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2009年第6期508-511,共4页 中国光学快报(英文版)
基金 supported by the National Natural Science Foundation of China (Nos.60508015 and 10876019) the National "973" Program of China (No.2007CB307000) the Shanghai Education Development Foundation (No.2007CG015) the Shanghai Leading Academic Discipline Project (B201)
关键词 Energy gap LITHIUM Niobium compounds Photonic band gap PHOTONICS Energy gap   Lithium   Niobium compounds   Photonic band gap   Photonics
  • 相关文献

参考文献23

  • 1E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
  • 2S. John, Phys. Rev. Lett. 58, 2486 (1987).
  • 3E. Yablonovitch, T. J. Gmitter, and K. M. Leung, Phys Rev. Lett. 67, 2295 (1991).
  • 4V. Berger, Phys. Rev. Lett. 81, 4136 (1998).
  • 5R. L. Byer, J. Nonlin. Opt. Phys. Mater. 6, 549 (1997).
  • 6L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, WR. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. B 12. 2102 (1995).
  • 7K. Mizuuchi and K. Yamamoto, Opt. Lett. 23. 1880 (1998).
  • 8M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, Appl. Phys. Lett. 62, 435 (1993).
  • 9C. Canalias, V. Pasiskevicius, R. Clemens, and F. Lautell, Appl. Phys. Lett. 82, 4233 (2003).
  • 10V. Dierolf and C. Sandmann, Appl. Phys. Lett. 84. 3987 (2004).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部