摘要
偏积分微分方程产生于许多科学与工程领域,数值求解此类问题具有重要应用.本文给出了数值求解一类长时间偏积分微分方程的二阶差分空间半离散格式.借助于Laplace变换及Parseval等式,给出了全局稳定性的证明、误差估计及全局收敛性的结果.
Partial integro-differential equations arise from many scientlhC ano engineering fields. Solving numerically these problems has important applications. In this paper, the second order spatially semi-discrete difference method for a partial integro-differential equation is considered. In virtue of Laplace transform and Parseval equation, the global stability, error estimate is given.
出处
《应用数学学报》
CSCD
北大核心
2009年第3期514-524,共11页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金(10271046,40674095)资助项目