期刊文献+

一类三阶中立型微分方程多重周期解的存在性 被引量:1

Existence of Multiple Periodic Solutions for a Class of Three-Order Neutral Differential Equations
原文传递
导出
摘要 利用临界点理论和S^1-指标理论研究了一类三阶中立型微分差分方程的多重周期解,得出了有关新的结果. By the critical theory and S^1-index theory, we obtain some new results of the existence and multiplicity of periodic solutions for a class of three-order neutral differential equations.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2009年第4期737-750,共14页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(10871213) 广东省自然科学基金(06021578) 广州市属高校科技计划(62006)
关键词 中立型微分方程 多重周期解 临界点理论 neutral differential equation multiple periodic solutions critical point theory
  • 相关文献

参考文献4

二级参考文献11

  • 1[1]Hale J K. Theory of Functional Differential Equations[M]. Springer-Verlag, New York, 1977.
  • 2[2]Hale J K, Lunel S M V. Introduction to Functional Differential Equations[M]. Springer-Verlag, New York, 1993.
  • 3[3]Kaplan J L, Yorke J A. Ordinary differential equations which yield periodic solution of delay equations[J]. J Math Anal Appl, 1974,48:314-324.
  • 4[4]Nussbaum R D. Periodic solutions of some nonlinear autonomous functional differential equations[J]. J Diff Eqns, 1973, 14: 360-394.
  • 5[5]LI Ji-bin, HE xue-zhong. Multiple periodic solutions of differential delay equations created by asymptotically Hamiltonian systems[J]. Nonl Anal T M A, 1998, 31(1/2):45-54.
  • 6[6]GUO Zhi-ming, XU Yuan-tong, LIN Zhuang-peng. A new Zp index theory and its applications[A]. Peter W. Bates, Kening Lu & Daoyi Xu Proceedings of the International Conference on Differential Equations and Computational Simulations[C]. World Scientific Pub Co, Singapore, 2000. 111-114.
  • 7[7]XU Yuan-tong, GUO Zhi-ming. Applications of a Zp index theory to periodic solutions for a class of functional differential equations[J]. J Math Anal Appl, 2001, 257(1): 189-205.
  • 8[8]Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications[J]. J Func Anal, 1973,14:349-381.
  • 9[9]Rabinowitz P H. Minimax methods in critical point theory with applications to differential equations[A]. CBMS Reg Conf Series in Math[C], Amer Math Soc, 1986, 65: 7-18.
  • 10[10]Mawhin J, Willem M. Critical Point Theory and Hamiltonian Systems[M]. Springer-Verlag, New York, 1989.

共引文献20

同被引文献15

  • 1Freedman H I, Wu J. Periodic solutions of single-species models with periodic delay[J]. SIAM J Math Anal,1992,23:689-701.
  • 2Wang L L, Li W T. Existence and global stability of positive periodic solutions of a predator-prey system with delays[J]. Appl Math Comput,2003,146:167-185.
  • 3Lefschetz S. Stability of Nonlinear Control Systems[M]. New York:Academic Press,1965.
  • 4Gopalsamy K, Weng P X. Feedback regulation of logistic growth[J]. Internat J Math Sci,1993(1):177-192.
  • 5Li Y K. Positive periodic solutions for neutral functional differential equations with distributed delays and feedback control[J]. Nonlinear Analysis:Real World Applications,2008(9):2214-2221.
  • 6Wang L L, Fan Y H. Permanence and existence of periodic solutions for a generalized system with feedback control[J]. Applied Mathematics and Computation,2010,216:902-910.
  • 7Li Y K, Zhang T W. Permanence of a discrete n-species cooperation system with time-varying delays and feedback controls[J]. Mathematical and Computer Modelling,2011,53:1320-1330.
  • 8Li Y, Zhu L. Positive periodic solutions for a class of higher-dimensional state-dependent delay functional differential equations with feedback control[J]. Appl Math Comput,2004,159:783-795.
  • 9Gatica J A. Fixed point theorems for mappings in ordered Banach spaces[J]. J Math Anal Appl,1979,71:547-557.
  • 10Guo D. Positive solutions of nonlinear operator equations and its applications to nonlinear integral equations[J]. Adv Math,1984,13:294-310.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部