期刊文献+

钙调蛋白抑制剂预测模型研究

Prediction of calmodulin inhibitors
下载PDF
导出
摘要 选用30个结构多样的CaM抑制剂分子作为数据集,采用多元线性回归(MLR)方法及主成分回归分析(PCA)方法对每个化合物的194个分子参数进行回归分析,分别建立了各自的最优预测模型.结果表明:多元线性回归分析方法所建模型与主成分回归所建模型相对比,发现逐步筛选法为最优建模方法.该方法所建模型统计结果良好(R2=0.952,SEE为0.289),应用于检验集时结果也比较令人满意(R2=0.941,SEP为0.295),模型表现出较强的可靠性和预测性. In order to build a predictable mathematic model of calmodulin inhibitors and determine the key influence descriptors of calmodulin inhibitors, we built a dataset composed of 30 calmodulin inhibitors with diversiform structures, regressed the 194 molecular indices by multivariate linear regression and principal component regression analysis methods and finally got the best predictable mathematic models of their own. From the analysis of the model, stepwise regression analysis was found to be the optimal regression method compared with other multivariate linear regressions and principal component regression analysis. The model built by this method showed satisfactory statistical results ( R^2 = 0. 952, SEE is 0. 289), whose proper predictability was validated by the independent test set ( R^2 =0. 941, SEP is 0.295). The key descriptors were identified, which are valuable and helpful for further researching and development of new CaM inhibitor drugs.
出处 《分子科学学报》 CAS CSCD 北大核心 2009年第3期168-173,共6页 Journal of Molecular Science
基金 大连理工大学青年教师培养基金资助项目(1000-893231) 大连理工大学博士科研启动基金资助项目(1000-893361) 国家自然科学基资助项目(10801025)
关键词 钙调蛋白抑制剂 分子参数 多元线性回归分析 主成分回归分析 calmodulin inhibitor molecular indices multivariate linear regression analysis principal component regression analysis
  • 相关文献

参考文献13

  • 1SERGIO M L,ARACELI P V,RACHELL MATA.[J].Phytochemistry,2007,68(14):1882-1903.
  • 2CHIN D,MEANS A R.[J].Trends in Cell Biology,2000,10(8):322-328.
  • 3BOUCHE N,YELLIN A,SNEDDEN W A,et al.[J].Annual Review of Plant Biology,2005,56:435-466.
  • 4SAKAI TT,KRISHNA N R.[J].Bioorganic & Medicinal Chemistry,1999,7(8):1559-1565.
  • 5DAYE S,WENQIANG T,LLIENG M.[J].Science In China Series C-Life Sciences,2001,44(5):449-460.
  • 6李洪凤,董秀兰.CaM及其抑制剂在神经系统疾病中研究进展[J].社区医学杂志,2007,5(09S):51-53. 被引量:5
  • 7LU K P,MEANS A R.[J].Eodocrine Reviews,1993,14(1):40-58.
  • 8MOLNAR A,LILIOM K,OROSZ F,et al.[J].European Journal of Phannacoogy-Molecuinr Pnarmcology Section,1995,291(2):73-82.
  • 9CRAVEN C J,WHITEHEAD B,JONES S K A,et al.[J].Biochemistry,1996,35(32):10287-10299.
  • 10HARMATT V,BOCSKEI Z,NARAY S G,et al.[J].Journal of Molecular Biology,2000,297(3):747-755.

二级参考文献11

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部