期刊文献+

布里渊散射决定0.67Pb(Mgl/3Nb2/3)O3一0.33PbTiO3 单晶的弹性、压电和介电常数

Determination of Elastic,Piezoelectric and Dielectric Constants of 0.67Pb(Mg_(1/3)Nb_(2/3))O_3-0.33PbTiO_3 Single Crystal by Brillouin Scattering
下载PDF
导出
摘要 我们报道了用高分辨布里渊散射,确定0.67Pb(Mg1/3Nb2、3)O2-0.33PbTiO2单晶中的弹性、压电和介电常数.所有的实验数据都是在一块沿[001]方向的极化的单晶样品上获得的。我们实验中得到的这些常数的数值和以往超声共振技术获得的数值相似。我们还研究了压缩模和剪切模在(010)和(001)平面内的方向依赖性。TA1和TA2模式的强度对散射角度有很强列依赖性。在散射角度为45°~65°内,一个新的峰出现在~18GHz附近。它可能与晶体中的微观不均匀性或者局域微结构相关。 We report the determination of the complete set of elastic, piezoelectric and dielectric constants of 0.67PMN--0.33PT crystal by using high-resolution Brillouin scattering in which all experimental data were collected from only one [001]-poled crystal sample. The values of determined constants are similar to those previously determined from four crystal samples by using a hybrid method combining both ultrasonic and resonant techniques. The directional dependence of the compressional and shear modulus of the crystal in (010) and (001) planes were investigated. The scattering intensities of TA1 and TA2 modes show a strong dependence on the scattering angle. A new feature appears at the low frequency side (-18 GHz) between 45°-65 °scattering angles and it may be related to the microheterogeneity or to a local microstructural change and some defect states in the crystal.
出处 《光散射学报》 北大核心 2009年第2期136-141,共6页 The Journal of Light Scattering
基金 The work described in this letter was fully supported by the grants from the National Science Foundation of China (Grant No. 10674171) the Research Grants Council of the Hong Kong, SAR, China [Project No. 90407453, respectively.
关键词 驰豫型铁电体 PMN-PT单晶 布里渊散射 relaxor ferroelectries PMN--PT single crystal Brillouin scattering
  • 相关文献

参考文献12

  • 1Park S E, Shrout T R. J. Appl. Phys. 1997, 82: 1804.
  • 2Yin Z, Luo H, Wang P, et al. Ferroelectrics, 1999, 229: 207.
  • 3Dong M, Ye Z G. J. Cryst. Growth, 2000, 209: 81.
  • 4Nomura S, Uchino. Ferroelectrics, 1983, 50: 107.
  • 5Saitoh S, Kobayashi T, Harada K, et al. IEEE. Trans. Ultrason. Ferroelectr. Freq. Control, 1999, 46: 152.
  • 6Uchino K. Piezoelectric actuators and ultrasonic motors[M]. Boston: Kluwer Academic, 1996.
  • 7RuiZhang, Bei Jiang, Wenwu Cao. J. Appl. Phys. , 2001, 90: 3471.
  • 8Jiang Z M, Liu Y L, Zhang P X. Acta Phys. Sin., 1987, 36: 952.
  • 9Ding Shuo, Zhu Yong, Liu Y L, et al. Chin Phys. Lett. , 2005, 22: 1790.
  • 10Park S E, Shrout T R. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 1997, 44: 1140.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部