期刊文献+

高温快速固相烧结合成Zr_(1-x)Hf_xW_2O_8的Raman光谱研究 被引量:5

Raman Spectroscopic Study of Zr_(1-x)Hf_xW_2O_8 by Fast Solid State Reaction
下载PDF
导出
摘要 首次采用高温快速固相烧结的方法合成了Zr1-xHfxW2O8(x=0,0.2,0.3,0.4,0.5,0.6,1)固溶体。合适的合成条件为:温度1573~1693 K,时间10 min^1 h,该方法使合成时间和能耗比传统固相反应烧结显著降低。Zr1-xHfxW2O8的晶胞参数与晶胞体积随Hf4+含量的增加而减小。合成的样品晶粒尺寸比常规固相烧结合成样品的颗粒尺寸较小,颗粒大小在1~10μm之间。拉曼光谱分析表明,Zr1-xHfxW2O8(0<x<1)拉曼谱峰的数目与α-ZrW2O8和α-HfW2O8相同,各拉曼模的位置介于二者对应模位置之间,随着Hf4+离子替代Zr4+离子数的增大,Zr1-xHfxW2O8(0<x<1)中多面体的内振动模向高频方向移动,而外模则向低波数移动,逐渐接近α-HfW2O8的拉曼峰位置。这些结果预示着Zr1-xHfxW2O8(0<x<1)的性质介于α-ZrW2O8和α-HfW2O8之间。 Zr1-xHfxWzO8(x=0,0. 2,0.3,0.4,0.5,0. 6,1)samples are successfully synthesized by fast solid state reaction for the first time. The appropriate temperature and sintering time are 1573-1693 K and 10-60 min. respectively. This approach reduces greatly the sintering time and energy waste. The grain sizes are between 1-10μm, smaller than those by conventional solid state reaction. The crystal cell parameters and volume decrease with the contents of Hf^4+. Raman spectroscopic study shows that the number of modes in Zr1-xHfxW2O8 is the same as that in α-ZrW2O8 and α-HfWzOs, but each mode position is between its corresponding mode positions of them; The internal vibrational modes shift to higher while the external modes shift to lower frequencies, and both gradually approach the mode positions of α-HfW2O8 with the contents of Hf^4+. The results suggest that the properties of Zr1-xHfxW2O8 (0〈x〈1) should be similar to and between α-ZrW2O8 and α - HfW2O8.
出处 《光散射学报》 北大核心 2009年第2期163-167,共5页 The Journal of Light Scattering
基金 河南省杰出人才创新基金(0121001200)
关键词 高温快速固相烧结合成 负热膨胀 拉曼光谱 High-heat and fast synthesis NTE Raman spectroscopy
  • 相关文献

参考文献13

  • 1Mary T A, Evans J S O, Vogt T, et al. Negative thermal expansion from 0. 3 to 1050 Kelvin in ZrW2O8[J]. Science, 1996, 272(5) : 90--92.
  • 2Evans J S O, Mary T A, Vogt T, et al. Negative thermal expansion in ZrW2O8 and HfW2O8 [J]. Chem. Mater. 1996, 8: 2809--2823.
  • 3Jorgensen J D, Hu Z, Short S. Pressure-- induced cubic- to- orthorhombic phase transformation in the negative thermal expansion material HfW2O8[J]. Appl. Phy, 2001, 89(6): 3184-- 3188.
  • 4Liang E J, Wang S H, Wu T A, et al. Raman spectroscopic study on structure, phase transition and restoration of zirconium tungstate blocks synthesized with a CO2 laser [J]. J. Raman Spectrosc. 2007, 38: 1186--1192.
  • 5Liang E J, Wang J P, Xu E M, et al. Synthesis of hafnium tungstate by a CO3 laser and its microstructure and Raman spectroscopic study [J]. J. Raman Spectrosc. 2008, 39: 887--892.
  • 6Ravindran T R, Akhlesh K A, Mary T A, High- pressure Raman spectroscopic study of Zirconium tungstate [J]. J. Phys. : Condens. Matter. 2001, 13:11573--11588.
  • 7Evans J S O, Mary T A,Vogt T, et al. Negative thermal expansion in ZrW2O8 and HfW2O8 [J].Chem. Mater. 1996, 8: 2809--2823.
  • 8Chen B, Muthu D V S, Liu Z X, et al. High-pressure optical study of HfW2O8 [J]. J. Phys. : Condens. Matter 2002, 14: 13911--13916.
  • 9Jorgensen J D, Hu Z, Short S, et al. Pressure-induced cubic-to-orthorhombic phase transformation in the negative thermal expansion material HfW2O8[J]. Appl. Phys, 2001, 89(6):3184-- 3188.
  • 10Jorgensen J D, Hu Z, Teslic S, et al. Pressureinduced cubic-to-orthorhombic phase transition in ZrW2O8[J]. Phys. Rev. B, 1999, 59:215-- 225.

二级参考文献13

  • 1T A Mary, J S O Evans, T Vogt, et al. Negative thermal expansion from 0. 3 to 1050 Kelvin in ZrW2O8 [J]. Science, 1996, 272: 90-92.
  • 2J S O Evans, Z Zhu, J D Jorgenson, et al. Compressibility, phase transitions, and oxygen migration in zirconium tungstate, ZrW2O8 [J]. Science, 1997, 275 : 61 - 65.
  • 3Yasuhisa Yarnamura, Noriyuki Nakajima, Kazuya Saito. Low-temperature heat capacities and Raman spectra of negative thermal expansion compounds ZrW2O8 and HfW2O8 [J]. Phys. Rev. B., 2002, 66: 014301.
  • 4EJ Liang, SHWang, TAWu, etal. Raman spectroscopic study on structure, phase transition and restoration of zirconium mngstate blocks synthesized with a CO2 laser [J]. J. Raman Spectrosc, 2007, 38: 1186- 1192.
  • 5E J Liang, T A Wu, B Yuan, et al. Synthesis, microstructure and phase control of zirconium tungstate with a CO2 laser [J]. J. Phys. D: Appl. Phys., 2007, 40: 3219- 3223.
  • 6A K A Pryde, K D Hammonds, M T Dove, et al; Origin of the negative thermal expansion in ZrW2O8 and ZrV2O7 [J]. J. Phys. : Condens. Matter, 1996, 8: 10973-10982.
  • 7D J Williams, D E Partin, F J Lincoln, et al. The disordered crystal structures of Zn (CN)2 and Ga (CN)3 [J]. J. Solid State Chem., 1997, 134:164 - 169.
  • 8A L Goodwln, C J Kepert. Negative thermal expansion and low-frequency modes in cyanide-bridged framework materials [J]. Phys. Rev. B., 2005, 71: 140301(R).
  • 9K W Chapman, P J Chupas, C J Kepert. Direct observation of a transverse vibrational mechanism for negative thermal expansion in Zn (CN)2: an atomic pair distribution function analysis [J]. J. Am. Chem. Soc., 2005, 127: 15630-15636.
  • 10B F Hosldns, R Robson. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D- linked molecular rods [J]. J. Am. Chem. Soc., 1990, 112: 1546 - 1554.

共引文献7

同被引文献32

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部