期刊文献+

mCH方程变式的一族显式孤立波解的稳定性 被引量:2

Stability of a Set of Explicit Solitary Wave Solutions for a Variant of a Modified Camassa-Holm Equation
下载PDF
导出
摘要 在Grillakis,Shatah,Strauss建立的关于非线性哈密顿系统孤立波轨道稳定的抽象理论框架下,对修正的Camassa-Holm(mCH)方程的一个变式的一族显式孤立波解的轨道稳定性进行了研究。通过半群方法、谱方法以及详细的计算,验证了抽象理论的假设条件是成立的。从而证明了在波速c的某范围内孤立波解是轨道稳定的。 Based on the abstract result of orbital stability of solitary waves established by Grillakis, Shatah, and Strauss, orbital stability of a set of explicit solitary waves for a variant of a modified Camassa-Holm Equation is investigated. Using the methods of semi-group and spectral analysis, and after the detailed computation, it is verified that the assumptions in the abstract result are hold. Finally the waves are proved to be orbitally stable when the wave speed c lies in some range.
作者 赵烨
出处 《北京石油化工学院学报》 2009年第2期62-64,共3页 Journal of Beijing Institute of Petrochemical Technology
基金 北京石油化工学院青年基金资助项目 项目号:08010702016
关键词 孤立波 轨道稳定 谱分析 solitary wave orbital stability spectral analysis
  • 相关文献

参考文献7

  • 1Camassa R,Holm D.An integrable shallow water equation with peacked solitons[J].Phys Rev Lett,1993,71(11):1661-1664.
  • 2Qian T,Tang M.Peakons and periodic cusp waves in a generalized Camassa-Holm equation[J].Chaos,Solitons and Fractals,2001,12,1347-1360.
  • 3赵烨,崔丽威.广义Camassa-Holm方程孤立波解的轨道稳定性[J].内蒙古大学学报(自然科学版),2007,38(5):490-493. 被引量:2
  • 4Tian L,Song X.New peacked solitary wave solutions of the generalized Camassa-Holm equation[J].Chaos,Solitons Fractals,2004,19:621-637.
  • 5Abdul-Majid Wazwaz.New compact and noncompact solutions for two variants of a modified Camassa-Holm equation[J].Applied Mathematics and Computation,2005,163,1165-1179.
  • 6Grillakis M,Statah J,Strauss W.Stability theory of solitary waves in the presence of symmetry[J].I J Functional Analysis,1987,74:160-197.
  • 7Dunford N,Schwartz J T.Linear operators[M].New York:Wiley,1998:2.

二级参考文献8

  • 1Grillakis M,Statah J,Strauss W.Stability theory of solitary waves in the presence of symmetry[J].I.J.Functional Analysis,1987,74:160-197.
  • 2Constantin A,Strass W A.Stability of the Camassa-Holm solitions[J].J.Nonlinear Sci,2002,12:415-422.
  • 3Qian T,Tang M.Peakons and periodic cusp waves in a generalized Camassa-Holm equation[J].Chaos,Solitons and Fractals,2001,12:1347-1360.
  • 4Adrian Constantin,Luc Molinet.Orbital stability of solitary waves for a shallow water equation[J].Physic D,2001,157:75-89.
  • 5Dunford N,Schwartz J T.Linear operators[M].Wiley,New York,1998.
  • 6Constantin A,Escher J.Global existence and blow-up for a shallow water equation[J].Annali Sc.Norm.Sup.Pisa,1998,26:303-328.
  • 7Li Y,Olver P.Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation[J].J.Diff.Eq.2000,162:27-63.
  • 8Hakkaev,Sevdzhan,Kirchev,Kivil.Local well-posedness and orbital stability of solitary wave solutions for the generalized Camassa-Holm equation[J].Commun.Partial Differ.Equations,2005,30(5-6):761-781.

共引文献1

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部