期刊文献+

基于最速下降法的人工免疫算法 被引量:2

THE ARTIFICIAL IMMUNE ALGORITHM BASED ON THE STEEPEST DESCENT METHOD
下载PDF
导出
摘要 由于人工免疫算法受到收敛速度相对较慢,局部搜索能力较弱、求解全局最优解需要的群体规模相对较大等因素的影响,本文将最速下降法与人工免疫算法结合,提出了一种新的混合算法.数值实验结果表明,该算法能够找到更优的优化结果,并且在收敛速度上明显优于传统的人工免疫算法. Artificial immune algorithm used to have disadvantages such as the relatively slow speed of convergence, weak local search capabilities, and the relatively large groups demanded for finding the global optimal solution. In this paper,a new hybrid algorithm is proposed which is based on the combination of the steepest descent method with the artificial immune algorithm. Experimental results show that the new algorithm can help realize better optimization and the speed of convergence of the new algorithm is much higher than that of the traditional artificial immune algorithm.
作者 赵伟 刘雪英
出处 《内蒙古工业大学学报(自然科学版)》 2009年第2期94-98,共5页 Journal of Inner Mongolia University of Technology:Natural Science Edition
基金 内蒙古自治区自然科学基金(项目编号:200208020104) 内蒙古工业大学重点研究项目(项目编号:ZD200815)
关键词 人工免疫算法 欧式距离 最速下降法 混合算法 artificial immune algorithm continental distance steepest descent method hybrid algorithm
  • 相关文献

参考文献11

  • 1L, N. de Castro,F. J. Von Zuben. Learning and Optimization Using the Clonal Selection Principle [J]. IEEE Trans on Evolutionary Computation, Special Issue on Artificial Immune Systems, 2002,6 (3):239-251.
  • 2D. Dasgupta. Artificial Immune Systems and Their Applications [M]. Springer, 1998.
  • 3J. S. Chun, H. K. Jung, S. Y. Hahn. A Study on Comparison of Optimization Performances between Immune Algorithm and other Heuristic Algorithms [J]. IEEE Transactions on Magnetics, 1998,34 (5) : 2972 - 2975.
  • 4T. Fukuda, K. Mori, M. Tsukiyama. Parallel Search for Multimodal Function Optimization with Diversity and Learning of Immune Algorithm [A]. Artificial Immune Systems and Their Applications [C]. Springer, 1998,210"- 220.
  • 5郑日荣,毛宗源,罗欣贤.改进人工免疫算法的分析研究[J].计算机工程与应用,2003,39(34):35-37. 被引量:27
  • 6郑日荣,毛宗源,罗欣贤.基于欧氏距离和精英交叉的免疫算法研究[J].控制与决策,2005,20(2):161-164. 被引量:31
  • 7R. Mutihac, A. Cicuttin, R.C. Mutihac, Entropic Approach to Information Coding in DNA Molecules [J]. Materials Science and Engineering :C, 2001,12 : 51-60.
  • 8梁鸿生,郝勇娜,王凯,柴继河.免疫算法[J].昆明理工大学学报(理工版),2003,28(5):72-76. 被引量:14
  • 9袁亚湘,孙文瑜.最优化理论与方法[M1.北京:科学技术出版社,2002,96.
  • 10罗印升,李人厚,张雷,刘芳.人工免疫算法在函数优化中的应用[J].西安交通大学学报,2003,37(8):840-843. 被引量:26

二级参考文献19

  • 1杨延彬.免疫学及检验[M].北京:人民卫生出版社,1999.1-65.
  • 2云庆夏编著.进化算法[M].北京:冶金工业出版社,.2000-05.
  • 3de Castro L, von Zuben F. Artificial immune system part I. basic theory and applications[R/OL] . http://www. dca. fee. unicamp.br/~lnmunes, 2002-02-15.
  • 4de Castro L, von Zuben F. Artificial immune system part Ⅱ:a survey of applications[R/OL]. http.//www. dca. fee. unicamp, br/~lnmunes, 2002-02-10.
  • 5Timmis J, Neal M, Hunt J. Artificial immune systems for data analysis[J].Biosystem,2000,55(1/3):143-150
  • 6Srinivas M, Patnaik L M. Adaptive probabilities of crossover and mutation in genetic algorithms[J]. IEEE Trans on System, Man, and Cybernetics , 1994,24(4):656~667.
  • 7ChunJang - Sung, JangHyun - Kyo, HahnSong - Yop. A Study on Comparison Optimization Performances between Immune Algorithm and Other Heuristic Algorithms[J]. IEEE Trans on Magnetics, 1998,34(5) :2972 - 2975.
  • 8Dasgupta D. Artificial Immune Systems and Their Applications[M] .Bedin Heidelberg:Springer- Verlang, 1999.
  • 9Toyoo Fukuda, Kazuyuki Mori, Makoto Tsukiyama.Parallel search for multi-modal funetion optimization with diversity and learning of immune algorithm[Al.Artificial Immune Systems and Their Applications[C ].Springer, 1998 : 210-220.
  • 10Digalakis J G, Margaritis K G. An experimental study of benehmarking functions for Genetic Algorithms[A].2000 IEEE Int Conf on Systems, Man and Cybernetics[C]. Nashville ,2000; 3810-3815.

共引文献124

同被引文献16

  • 1孙龙飞,孙健国,张海波.航空发动机组件化建模技术[J].航空动力学报,2009,24(10):2368-2371. 被引量:3
  • 2郑日荣,毛宗源,罗欣贤.基于欧氏距离和精英交叉的免疫算法研究[J].控制与决策,2005,20(2):161-164. 被引量:31
  • 3夏飞,黄金泉,周文祥.基于MATLAB/SIMULINK的航空发动机建模与仿真研究[J].航空动力学报,2007,22(12):2134-2138. 被引量:44
  • 4Biswal B, Biswal M K, Dash P K, et al. Power quality event characterization using support vector machine and optimization using advanced immune algorithm[J]. Neurocomputing, 2013, 103 75-86.
  • 5Nicholas W, Pradeep R, Greg S, et al. Artificial im- mune systems for the detection of credit card fraud.- an architecture, prototype and preliminary results[-J. In- formation Systems Journal, 2012, 22(1): 53-76.
  • 6Chen J, Lin Q, Ji Z. A hybrid immune multiobjective optimization algorithm[J], European Journal of Opera tional Research, 2010, 204(2): 294-302.
  • 7Dasgupta D. Artificial Inmaune Systems and Their Ap- plications [M]. Bedin Heidelberg: Springer-Verlang, 1999.
  • 8Jang S, Chun M K K, HyuKyo J. Shape optimiza- tion of electromagnetic devices using irmnune algorithm I-J]. IEEE Transactions on Magnetics, 1997, 33 (2) : 1876-1879.
  • 9Srinivas M. A daptive probability of crossover and mutation in genetic algorithms [J]. IEIE Trans. Syst. Man. Cybern. , 1994, 24(4): 655-667.
  • 10何珍梅,徐雪松.一种多模态函数优化的免疫算法[J].南昌大学学报(工科版),2008,30(1):83-86. 被引量:1

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部