期刊文献+

人工神经网络——阳极溶出伏安标准曲面法测定水体中元素的化学形态分布 被引量:2

Determination of Chemical Speciation in Water System by Artificial Neural Network-Anodic Stripping Voltammetric Standard Curve Surface
下载PDF
导出
摘要 建立了人工神经网络阳极溶出伏安标准曲面法,并将其成功地用于Pb^(2+)-Cd^(2+)-OH^--Cl^-混合体系中铅和镉的累积稳定常数和化学形态分布计算。 An artificial neural network-anodic stripping voltammetric standard curved surface method was suggested. The peak current ip is instantaneous current in normal anodic stripping voltammetriy and its variation is obvious.The current iA used in standard curved surface method is integrated current in the interval of the applied voltage in anodic stripping process and has good reproducibility. iA , as an entry, is input in artifical neural network. The standard curved surface method was successfully applied to calculate the accumulative stabilization constant and the chemical speciation distribution in mixed system, e.gPb2+、 -Cd2+、 -OH-、 -Cl-.
作者 齐建锋 邓勃
机构地区 清华大学化学系
出处 《现代仪器使用与维修》 1998年第3期9-13,共5页 Modern Instruments
关键词 人工神经网络 阳极溶出伏安法 水体 环境监测 artificial neural network anodic slipping voltammetriy standard curve surface method chemical speciation
  • 相关文献

参考文献2

二级参考文献2

  • 1艾有年,环境样品中痕量金属的测定,1988年
  • 2郭学文,分析化学,1983年,11卷,5期,362页

共引文献39

同被引文献1697

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部