期刊文献+

基于前向神经网络的非线性时变系统辨识的改进递推最小二乘算法 被引量:5

Improved RLS algorithm for nonlinear time-varying system identification based on feed forward neural networks
下载PDF
导出
摘要 标准的递推最小二乘算法随着递推次数的增加,增益矩阵将逐渐趋于零,致使递推算法慢慢失去修正能力,出现所谓的"数据饱和"现象。为了克服"数据饱和"问题,首先对递推最小二乘算法进行改进,得到了改进的最小二乘算法(IRLS),并给出了收敛性证明,然后将该算法应用于基于前向神经网络的非线性时变系统辨识。通过对两个非线性时变系统进行有效验证,仿真结果表明本文算法计算精度高、计算速度快、数值稳定性好,并能有效克服"数据饱和"。 An improved recursive least square (IRLS) method was proposed and applied in nonlinear time-varying system identification together with the feed forward neural network. Theoretic analysis and two simulation examples were given to demonstrate the effectiveness of the proposed IRLS. Simulation results show that the proposed IRLS can overcome the problem of 'data saturation' and has higher accuracy and robustness.
出处 《振动与冲击》 EI CSCD 北大核心 2009年第6期107-109,144,共4页 Journal of Vibration and Shock
基金 国家自然科学基金(10672045) 教育部新世纪优秀人才支持计划(NCET-06-0344)
关键词 非线性时变系统 多层前向神经网络 系统辨识 改进递推最小二乘算法 nonlinear time-varying system multi-layer feed forward neural network system identification improved RLS
  • 相关文献

参考文献12

二级参考文献62

  • 1张立翔,李崇孝,范家参.非线性振动结构的识别[J].工程力学,1994,11(2):110-122. 被引量:6
  • 2谭永红.多层前向神经网络的RLS训练算法及其在辨识中的应用[J].控制理论与应用,1994,11(5):594-599. 被引量:28
  • 3于开平,邹经湘,庞世伟.结构系统模态参数识别方法研究进展[J].世界科技研究与发展,2005,27(6):22-30. 被引量:18
  • 4丁锋.多变量系统的辅助模型辨识方法的收敛性分析[J].控制理论与应用,1997,14(2):192-200. 被引量:28
  • 5丁锋.时变参数系统辨识及其应用:博士学位论文[M].北京:清华大学自动化系,1994..
  • 6Karray F, Dwyer T, Makrakis D. Bilinear approximation and identification for nonlinear system modeling[A]. In: Proceedings of the 35th IEEE Conference on Decision and Control, Volume 1[C]. 1996,1088-1093.
  • 7Medden S,Tourneret T Y,Castnie F. Identification of time-varying bilinear systems[A]. In:Ninth IEEE SP Workshop on Statistical Signal and Array Processing[C]. 1998,160-163.
  • 8Green M,Zoubir A M. Selection of the best wavelet basis for a time-varying Volterra model[A].In: Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers ,Volume 2[C]. 2000,1082-1086.
  • 9Green M,Zoubir A M. A search for a parsimonious basis sequence approximation of time-varying nonlinear systems [A]. In: IEEE International Symposium on Circuits and Systems[C]. 2000,148-151.
  • 10Ralston J C,Boashash B,Zoubir A M. A practical procedure for identifying time-varying nonlinear systems using basis sequence approximations [A]. In:IEEE International Conference on Acoustics,Speech ,and Signal Processing,Volume 5[C]. 1996,1964-1967.

共引文献64

同被引文献38

引证文献5

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部