摘要
设Nn+p是截面曲率KN满足1/2<δ≤K_N≥1的n+p维局部对称空间完备的δ-Pinching黎曼流形,Mn是Nn+p中的紧致极小子流形。讨论了这类子流形关于Ricci曲率的pinching问题。
Let N^n+p be a n + p-dimensional locally symmetric complete Riemannian manifold with 1 sectional curvature KN satisfies 1/2〈δ≤KN≤1 and M^n be an n-dimensional compact minimal submanifolds in N^n+p. In this paper, the authors discuss the pinching theorem about this manifold with Ricci curvature.
出处
《江西科学》
2009年第3期339-342,共4页
Jiangxi Science
关键词
局部对称
RICCI曲率
极小子流形
全测地
Locally symmetry, Ricci curvature, Minimal submanifolds, Total geodesic