期刊文献+

一类具有垂直传染的SIS传染病模型的全局分析 被引量:4

Global Analysis of SIS Epidemic Model with Vertical Infections
下载PDF
导出
摘要 建立了具有垂直传染和人口输入输出的SIS传染病模型,得到了地方病平衡点存在的阈值条件.利用稳定性理论,得到了各类平衡点的全局稳定性的充要条件. SIS epidemic model with vertical infections and a varying total population size is proposed. Using the stability theory, the threshold for existence of endemic equilibrium is investigated. Sufficient conditions for global asymptotical stability of the equilibria are obtained.
作者 邹琴 高淑京
出处 《赣南师范学院学报》 2009年第3期14-16,共3页 Journal of Gannan Teachers' College(Social Science(2))
关键词 传染病模型 平衡点 全局渐近稳定性 阈值 epidemic model equilibrium global asymptotical stability threshold
  • 相关文献

参考文献2

二级参考文献17

  • 1Kermack W O, McKendrick A G. Contributions to the matlhematical theory of epidemics-Part 1[J].Proc RoySoc London Ser A, 1927,115(3) :700-721.
  • 2Mena-Lorca J, Hethcote H W. Dynamic models of infectious diseases as regulators of population sizes[J]. J Math Biol, 1992,30(4):693-716.
  • 3Li J, Ma Z. Qualitative analysis of SIS epidemic model with vaccination and varying total population size[J]. Math Comput Modelling ,2002,35(11/12) :1235-1243.
  • 4Heesterbeck J A P, Metz J A J. The saturating contact rate in marriage-and epidemic models[ J]. J Math Biol, 1993,31(2) :529-539.
  • 5Brauer F, Van den Driessche P. Models for transmission of disease with immigration of infectives[ J].Math Biosci, 2001,171(2): 143-154.
  • 6Han L,Ma Z,Hethcote H W. Four predator prey models with infectious diseases[J]. Math Comput Modelling, 2001,34(7/8): 849-858.
  • 7LaSalle J P. The Stability of DynamicalSystem [ M]. New York: Academic Press, 1976.
  • 8Jeffries C, Klee V, Van den Driessche P. When is a matrix sign stable? [ J]. Canad J Math, 1977,29(2) :315-326.
  • 9Hethcote H W. The mathematics of infectious disease[J]. SIAM Review, 2000;42(2):599-653.
  • 10Cappasso V. Mathematical structures of epidemic systems [M]. Heidelberg: Springer-Verlag, 1993.

共引文献56

同被引文献34

  • 1李一鸣,刘红,杜静,王贵艳.一类具有两次接种的时滞SVIR传染病模型[J].数学的实践与认识,2020,0(1):307-312. 被引量:3
  • 2樊志良.传染系数为β(N)且具指数出生的SIR传染病模型[J].华北工学院学报,2004,25(6):433-435. 被引量:1
  • 3F.Brauer,C.Castillo-Chavez.Mathematical models in population biology and epidemiology[M].New York:Springer,2000.
  • 4O.Diekmann,J.A.P.Heesterbeek.Mathematical epidemiology of infectious diseases[M].Chisteter:John Wiley & Son,2000.
  • 5S.B.Hsu,Y.H.Hsieh.On the role of asymptomatic infection in transmission dynamics of infectious diseases[J].Bull.Math.Biol.,2008,70:134-155.
  • 6Z.Zhang,Y.Suo.Qualitative analysis of a SIR epidemic model with saturated treatment rate[J].J.Appl.Math.Comput.,2010,34(1-2):177-194.
  • 7W.O.Kermack,A.G.McKendrick.Contributions to the mathematical theory of epidemics I[J].Proc.Roy.Soc.Ser A,1927,115:700–721.
  • 8Jingan Cui,Yonghong Sun,Huaiping Zhu.??The Impact of Media on the Control of Infectious Diseases(J)Journal of Dynamics and Differential Equations . 2008 (1)
  • 9Rongsong Liu,Jianhong Wu,Huaiping Zhu.??Media/psychological impact on multiple outbreaks of emerging infectious diseases(J)Computational and Mathematical Methods in Medicine . 2007 (3)
  • 10Shingo Iwami,Yasuhiro Takeuchi,Xianning Liu.??Avian–human influenza epidemic model(J)Mathematical Biosciences . 2006 (1)

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部