期刊文献+

可换环上上三角矩阵代数的若当自同构分解(英文)

Decomposition of Jordan Automorphisms of Upper Triangular Matrix Algebra over Commutative Rings
下载PDF
导出
摘要 设R是含单位元1和可逆元2的可换环,Tn+1(R)表示R上(n+1)×(n+1)级上三角矩阵全体所形成的矩阵代数.本文证明了T(R)的每一个若当自同构都可唯一的分解为图自同构,内自同构和对角自同构的乘积. Let R be a commutative ring with identity I and unit 2, Tn+1 (R) the algebra of all upper triangular n+1 by n+1 matrices over R. In this article, we prove that any Jordan automorphism of Tn+1 (R) can be uniquely written as a product of graph, inner and diagonal automorphisms.
出处 《大学数学》 2009年第3期13-18,共6页 College Mathematics
关键词 若当自同构 上三角矩阵代数 可换环 Jordan automorphism triangular matrix algebra commutative rings
  • 相关文献

参考文献4

  • 1Wang X T, You H. Decomposition of Jordan automorphisms of strictly triangular matrix algebra over local rings [J]. Linear Algebra Appl. 2004, 392: 183--193.
  • 2Wang X T, You H. Decomposition of Lie automorphisms of strictly triangular matrix algebra over commutative rings[J]. Linear Algebra Appl. , 2006, 419: 466--474.
  • 3Cao Y A. Automorphisms of certain Lie algebras of upper triangular matrices over commutative ring[J]. J Algebra. 1997, 189: 506--513.
  • 4Beidar K I, Bresar M, Chebotar M A. Jordan automorphisms of triangular matrix algebra over a connected commutative ring[J]. Linear Algebra Appt. 2000, 312: 197--201.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部