摘要
设R是含单位元1和可逆元2的可换环,Tn+1(R)表示R上(n+1)×(n+1)级上三角矩阵全体所形成的矩阵代数.本文证明了T(R)的每一个若当自同构都可唯一的分解为图自同构,内自同构和对角自同构的乘积.
Let R be a commutative ring with identity I and unit 2, Tn+1 (R) the algebra of all upper triangular n+1 by n+1 matrices over R. In this article, we prove that any Jordan automorphism of Tn+1 (R) can be uniquely written as a product of graph, inner and diagonal automorphisms.
出处
《大学数学》
2009年第3期13-18,共6页
College Mathematics
关键词
若当自同构
上三角矩阵代数
可换环
Jordan automorphism
triangular matrix algebra
commutative rings