期刊文献+

关于一类二部图的均匀邻点可区别全染色 被引量:4

On the Equitable Adjacent Vertex-distinguishing Total Coloring of k-regular Bipartite Graphs
下载PDF
导出
摘要 若图的邻点可区别全染色的各色所染元素数之差不超过1,则称该染色法为图的均匀邻点可区别全染色,而所用的最少颜色数称为该图的均匀邻点可区别全色数.本文给出了一类二部图的均匀邻点可区别全染色数. We propose the notion of equitable adjacent vertex-distinguishing total coloring of graphs, k-regular bipartite graphs is proved that the charmotic number of equital adjacent vertex-distinguish total coloring is k+2.
出处 《大学数学》 2009年第3期80-83,共4页 College Mathematics
关键词 染色 邻点可区别全染色 均匀邻点可区别全染色数 二部图 graph coloring adjacent vertex-distinguishing total coloring equitable adjacent vertex-distinguish total coloring chromatic number bipartite graph
  • 相关文献

参考文献5

  • 1Burris A C and Schelp R H. Vertex-distinguishing proper edge-coloring[J]. J. of Graph Theory, 1997, 21: 73--82.
  • 2Zhang Zhongfu, Liu Linzhong, Wang Jianfang. Adjacent strong edge coloring of graphs[J]. Applied Mathematics Letters, 2002, 15: 623--626.
  • 3张忠辅,陈祥恩,李敬文,姚兵,吕新忠,王建方.关于图的邻点可区别全染色[J].中国科学(A辑),2004,34(5):574-583. 被引量:192
  • 4Chen B L and Lih K W. Equitable coloring of trees[J]. J. of Combin Theory, 1994, Ser. B. 61:83--87.
  • 5Bondy J A, Murty U S R. Graphs theory with applications[M]. New York: American Elsevier Publishing Co. Inc., 1976.

二级参考文献8

  • 1Burris A C,Schelp R H.Vertex-distinguishing proper edge-colorings.J of Graph Theory,1997,26(2): 73-82
  • 2Bazgan C,Harkat-Benhamdine A,Li H,et al.On the vertex-distinguishing proper edge-coloring of graphs.J Combin Theory,Ser B,1999,75: 288-301
  • 3Balister P N,Bollobas B,Schelp R H.Vertex distinguishing colorings of graphs with △(G)=2.Discrete Mathematics,2002,252(2): 17-29
  • 4Zhang Zhongfu,Liu Linzhong,Wang Jianfang.Adjacent strong edge coloring of graphs.Applied Mathematics Letters,2002,15:623-626
  • 5Dietel Reinhard.Graph Theory.New York:Springer-Verlag,1997
  • 6Chartrand G,Lesniak-Foster L.Graph and Digraphs.2nd Edition.Monterey,CA: WadsworthBrooks/Cole,1986
  • 7Hansen P,Marcotte O.GraphColoring and Application.Providence: AMS,1999
  • 8Bondy J A,Murty U S R.Graph Theory with Applications.New York: American Elsevier,1976

共引文献191

同被引文献29

  • 1马刚,马明,张忠辅.若干倍图的均匀全染色(英文)[J].数学研究,2009,42(1):40-44. 被引量:10
  • 2张忠辅,陈祥恩,李敬文,姚兵,吕新忠,王建方.关于图的邻点可区别全染色[J].中国科学(A辑),2004,34(5):574-583. 被引量:192
  • 3王海英,孙良.两类图的Mycielski图的均匀全色数[J].科技导报,2005,23(8):29-30. 被引量:1
  • 4马刚,张忠辅.关于多重联图的均匀全染色[J].Journal of Mathematical Research and Exposition,2007,27(2):351-354. 被引量:7
  • 5张忠辅.关于图的均匀全染色[R].天津南开大学数学研究所,1996..
  • 6Bazgan C, Harkat-Benhamdine A, Li H, Wozniak M. On the vertex-distinguishing proper edge-colorings of graphs. J. Combin. Theory: Ser B, 1999, 75(2): 288-301.
  • 7Burris A C, Schelp R H. Vertex-distinguishing proper edge-colorings. J. Graph Theory, 1997, 26(2): 73-82.
  • 8Balister P N, Piordan O M, Schelp R H. Vertex-distinguishing edge colorings of graphs. J. Graph Theory, 2003,42: 95-105.
  • 9Balister P N, Gyori E, Lebel J, Schelp R H. Adjacent vertex distinguishing edge-colorings. SIAM Journal on Discrete Mathematics, 2006, 21(1): 237-250.
  • 10Zhang Z F, Liu L Z, Wang J F. Adjacent strong edge coloring of graphs. Applied Mathematics Letters, 2002, 15: 623-626.

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部