期刊文献+

含有治愈部分的可加危险模型的估计

Estimation of Surviavl Cure and Additive Hazards Models
下载PDF
导出
摘要 最近可加危险(AH)模型被广泛地应用于生存分析数据,模型的协变量可以假设为时间独立或时间相关的.基于混合治愈模型,有界累计危险治愈模型和"不正确"的比例危险模型.本文将上述的可乘危险模型延伸到可加的危险模型,这里的模型可以允许含治愈部分的生存数据的存在."不正确"的AH模型的识别和参数估计也将在本文给出讨论. Most recently, additive hazards (AH) models are extensively applied to analyze survival data, in which covariates are assumed to be time-independent or time-dependent. In this paper, we extend multiplicative hazards model which are based on mixture cure, no-mixture cure models and "improper" proportional hazards models to AH model which may accommodate survival data with long-term survivors. Identifiability of "improper" AH and its estimation are investigated in this paper.
出处 《大学数学》 2009年第3期118-122,共5页 College Mathematics
关键词 可乘危险 可加危险 治愈模型 模型识别 部分似然 multiplicative hazards additive hazards cure model model identifiability partial likelihood
  • 相关文献

参考文献11

  • 1Mailer R A, Zhou X. Survival analysis with long-term survivors[M]. Chichester.. John Wiley and Sons, 1996.
  • 2KuK A Y C, Chen C H. A mixture model combining logistic regression with proportional hazards regression[J]. Biometrika, 1992, 79: 531--541.
  • 3Yakovlev A Y, Asselain B, Bardon V J, Fourquet A, Hoang T, Rochefediere A, Tsodikov A D. A simple stochastic model of tumor recurrence and its applications to data on premenopausal breast cancer in Biometrie et Analyse de Donnees Spatio temporlles[M]. France, Rennes: Soclete Francaise de Biometrie, NESA, 1993.
  • 4Chen M H, Ibrahim J G, Sinha D. Bayesian survival anlaysis[M]. New York.. Springer-Verlag Press, 2001.
  • 5Tsodikov A D, Ibrahim J G, Yakovlev A Y. Estimating cure rates from survival data:an alternative to Two- component Mixture Models[J]. Journal of the American Statistical Association, 2003, 98: 1063--1078.
  • 6Zhao X B, Zhou X. Proportional hazards models for survival data with long-term survivors[J]. Statistics & Probability Letters, 2006, 76:1685-1693.
  • 7Zhao Xiaobing. Proportional hazards models for survival data with long-term survivors[M]. Hong Kong: Dissertation in The Hong Kong Polytechnical University, 2006.
  • 8Lin D Y, Ying Z L. Semiparametric analysis of the additive risk model[J]. Biometrika, 1994, 81: 61--71.
  • 9Martinussen T, Cheike T H. A flexible additive multiplicative hazard model [J]. Biometrika, 2002, 89.. 283--298.
  • 10Chen Y Q, Rohde C A, Wang M C. Additive hazards models with latent treatment effectiveness lag time[J]. Biometrika, 2002, 89:917--931.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部