摘要
将广义调和级数sum from n=1 to ∞ 1/n^x推广为一类指数项级数sum from n=1 to ∞ a_nd_n^x,并证明了这类指数项级数有结构简单的收敛域,其和函数的性质与幂级数的相似.
We extend the generalized harmonic series ∑n=1^∞ 1/n^x into a class of exponential terms series ∑n=1^∞andn^x.Itproves that the structure of the convergence domain of these series is simple, and the properties are similar to the power series in their sum functions.
出处
《大学数学》
2009年第3期187-189,共3页
College Mathematics
关键词
广义调和级数
指数项级数
和函数性质
generalized harmonic series
exponential terms series
properties of sum function