摘要
阐述了简化形式的积分中值定理中f(x)不要求连续的情况下成立的条件.即"设函数f(x)在闭区间[a,b]上可积,同时f(x)在[a,b]上有原函数,则存在ξ∈(a,b),使∫ from x=a to b f(x)dx=f(ξ)(b-a)成立",并且给出了简洁的证明.
Narrating the condition in which f(x) in the simplified form of mean value theorem for the integrals is tenable in discontinuous situation, that's to say, "if function f(x) is possible to be integral on close interval [a,b], and f(x) has the primary function on [a,b]at the same time, ξ∈ (a,b) and ∫fa^b(x)dx=f(ξ)(b-a) is tenable" The above is a proved succinctly.
出处
《大学数学》
2009年第3期195-196,共2页
College Mathematics
关键词
积分中值定理
不连续
原函数
mean value theorem for the integrals
discontinuous
primary function