期刊文献+

基于信赖域二次规划的非线性模型预测控制优化算法 被引量:11

Nonlinear model predictive control optimization algorithm based on the trust-region quadratic programming
下载PDF
导出
摘要 针对非线性预测控制如何在有限时域内有效的求解非凸非线性规划这一关键问题,本文采用序列二次规划方法,将非线性规划转化为一系列二次子规划求解.首先根据非线性规划联立方法将系统状态和控制量同时作为优化变量,得到以控制量步长为优化变量,只包含不等式约束的子二次规划问题,并用它取代原SQP子规划,减小了子问题的规模;随后采用基于信赖域二次规划的方法求解子规划问题,保证每次迭代的可行性;同时采用一种能够保持SQP问题Hessian矩阵稀疏结构的更新方法,也在一定程度上降低了算法的复杂程度.最后的仿真结果表明了该方法的有效性. The nonlinear model predictive control(NMPC) requires the optimal or suboptimal solution of a nonlinear non-convex optimization problem at each sampling time, and the sequential-quadratic-programming(SQP) is the conventional algorithm for solving such a problem. By means of the simultaneous approach in nonlinear programming, an SQP sub-problem of NMPC is built, which considers the system state and the control as optimization variables simultaneously. Then, a new quadratic-programming(QP) sub-problem is established for which the step-length in each iteration is treated as an optimization variable and the linear inequalities are treated as constraints. After that, a trust-region-quadratic- programming approach is used to solve this sub-problem, and an update method that maintains the sparse structure for the Hessian matrix is used to reduce the computational complexity. Finally, simulation examples show the effectiveness of the presented approach.
作者 赵敏 李少远
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2009年第6期634-640,共7页 Control Theory & Applications
基金 国家自然科学基金资助项目(60774015 60534020) 国家"863"计划资助项目(2006AA04Z173) 高等学校博士点专项科研基金资助项目(20060248001)
关键词 非线性预测控制 非线性规划 序列二次规划(SQP) 信赖域 nonlinear predictive control nonlinear programming sequential-quadratic-programming trust-region approach
  • 相关文献

参考文献22

  • 1MAYNE D Q, RAWLINGS J B, RAO C V, et al. Constrained model predictive control: Stability and optimality[J]. Automatica, 2000, 36(6): 789 - 814.
  • 2HESSON M A. Nonlinear model predictive control: Current status and future directions[J]. Computers and Chemical Engineering, 1998, 23(2): 187 - 202.
  • 3IMSLAND L, BAR N, FOSS B. More efficient predictive control[J]. Automatica, 2005, 41(8): 1395 - 1403.
  • 4HU B, LINNEMANN A. Toward infinite-horizon optimality in nonlinear model predictive control[J]. IEEE Transactions on Automatic Control, 2002, 47(4): 679 - 682.
  • 5陈虹,刘志远,解小华.非线性模型预测控制的现状与问题[J].控制与决策,2001,16(4):385-391. 被引量:66
  • 6杜晓宁,Xi,Yugeng,Li,Shaoyuan.A Computationally Efficient Aggregation Optimization Strategy of Model Predictive Control[J].High Technology Letters,2002,8(2):68-71. 被引量:4
  • 7丁宝苍,邹涛,李少远.时变不确定系统的变时域离线鲁棒预测控制[J].控制理论与应用,2006,23(2):240-244. 被引量:11
  • 8LONG C E, POLISETTY P K, GATZKE E P. Nonlinear model predictive control using deterministic global optimization[J]. Journal of Process Control, 2006, 16(6): 635 - 643.
  • 9袁亚湘 孙文瑜.最优化理论与方法[M].北京:科学出版社,2001..
  • 10MARK C. Efficient nonlinear model predictive control algorithms [J]. Annual Reviews in Control, 2004, 28(2): 229 - 237.

二级参考文献62

共引文献232

同被引文献135

引证文献11

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部