期刊文献+

CSTR系统发酵产氢细菌群落动态与产氢能力关系解析 被引量:1

Analysis of Dynamic Characteristics for Fermentative Hydrogen-producing Bacteria Community and Hydrogen Producing Capability in CSTR
原文传递
导出
摘要 将CSTR系统内pH由4.2一次性提高至6.0左右,启动发酵类型的转化,研究了转化过程系统内的产氢动态和细菌群落.结果表明,在有机负荷维持在(33±1)kg/(m3.d)的情况下,发酵类型10d内未发生改变,产氢量8d内未降低,15d后系统内种群由乙醇型转化为丁酸型,进水碱度由250mg/L增至2450mg/L.研究中利用荧光原位杂交技术(FISH)对反应系统内3类微生物群进行监测发现,在转化过程中Clostridium cluster XI数量增加,Clostridium clusterⅠ和Ⅱ数量减少,而Enterobacteriaceae始终存在,变化不明显.种群的消长同反应系统产氢能力的高低存在密切关联,以Clostridium clusterⅠ和Ⅱ占优势的乙醇型发酵具有更佳的产氢能力,平均比产氢速率为23.6mol/(kg·d). The start into the types of fermentation was carried out by pH adjustment from 4.2 to 6.0 in CSTR system. The process of transforming of hydrogen production and dynamic community of bacteria were studied. The results showed that with the organic load maintained at (33±1 ) kg/(m^3 · d), there was no change in 10 d for the type of fermentation, the amount of hydrogen does not reduce in 8 d. After 15 d, the system was transformed from the ethanol-based type into butyric acid type and water alkalinity was from 250 mg/L to 2 450 mg/L. The use of fluorescence in situ hybridization (FISH) system was in response to the 3 groups of micro-organisms. It was found that in the process of transforming, Clostridium cluster Ⅺ increases and Clostridium cluster Ⅰ and Ⅱ decreases. Enterobacteriaeeae always existed with no change. The microbial growth must be considered with hydrogen production capability. The average hydrogen production rate reached to 23.6 mol/(kg·d) with Clostridium cluster Ⅰ and Ⅱ dominated in fermentation reactor.
出处 《环境科学》 EI CAS CSCD 北大核心 2009年第7期2124-2129,共6页 Environmental Science
基金 国家自然科学基金项目(0808049) 上海高校选拔培养优秀青年教师科研专项基金项目(RE630) 上海师范大学一般科研项目(DKL842)
关键词 发酵产氢 细菌 液相末端产物 荧光原位杂交(FISH) fermentative hydrogen-producing bacteria liquid end production fluorescent in situ hybridization(FISH)
  • 相关文献

参考文献5

二级参考文献61

  • 1任南琪,陈小蕾,赵丹.Control of fermentation types in continuous-flow acidogenic reactors:effects of pH and redox potential[J].Journal of Harbin Institute of Technology(New Series),2001,8(2):116-119. 被引量:13
  • 2APHA, 1992. Standard methods for the examination of wastewater[M]. 18th ed. Washington, D.C., USA.
  • 3Bhatti Z I, Furukawa K, Fujita M, 1995. Comparative composition and characteristics of methanogenic granular sludges treating industrials wastes under different conditions [J]. J Ferment Bioeng, 79(3): 273-280.
  • 4Brock T D, Madigan M T, Martinko J M, 1994. Biology of microorganisms[M]. New York: Prentice-Hall.
  • 5Cai M L, Liu J X, Wei Y S, 2004. Enhanced biohydrogen production from sewage sludge with alkaline pretreatment [J]. Environ Sci Technol, 38(11): 3195-3202.
  • 6Chen C C, Lin C Y, Lin, M C, 2002. Acid-base enrichment enhances anaerobic hydrogen production process [J]. Appl Microbiol Biot, 58(2): 224-228.
  • 7Das D, Vezirog T N, 2001. Hydrogen production by biology process: a survey of literature[J]. Int J Hydrogen Energy, 26(1): 13-28.
  • 8Dubois M, Gilles K A, Hamilton J K et al., 1956. Calorimetric method for determination of sugars and related substances [J]. Anal Chem, 28: 350-356.
  • 9Fang H P, Liu H, 2002. Effect of pH on hydrogen production from glucose by a mixed culture[J]. Bioresource Technol, 82(1): 87- 93.
  • 10Goldberg I, Cooney C L, 1981. Formation of short-chain fatty acids from H2 and CO2 by a mixed culture of bacteria [J]. J Enivron Microbi, 41(1): 148-154.

共引文献73

同被引文献16

  • 1SITHJUNDA S, REUNGSANG A. Biohydrogen production from waste glycerol and sludge by anaerobic mixed cultures [ J ]. International journal of hydrogen energy, 2012,37 ( 18 ) : 13789 - 13796.
  • 2HANS K, SHIN H S. Biohydrogen production by anaerobicfermentation of food waste [ J ]. International Journal of Hydrogen energy,2004, 29(6) :569 -577.
  • 3SREETHAWONG T, CHATSIRIWATANS S, RANGSUNVIG1T P, et al. Hydrogen production from cassava wastewater using an anaerobic sequencing batch reactor: Effects of operational parameters, COD : N ratio, and organic acid composition [ J ]. International Journal of Hydrogen Energy,2010,35 (9) :4092 - 4102.
  • 4SREETHAWONG T, N1YAMAPA T, NERAMITSUK H, et al. Hydrogen production from glucose-containing wastewater using an anaerobic sequencing batch reactor: Effects of COD loading rate, nitrogen content, and organic acid composition [ J ]. Chemical Engineering Journal ,2010,160( i ) : 322 - 332.
  • 5CHEN W H, SUNG S, CHEN S Y. Biological hydrogen production in an anaerobic sequencing batch reactor: pH and cyc|ic duration effects[ J]. International Journal of Hydrogen Energy,2009,34( 1 ) : 227 - 234.
  • 6AMORIM E L C D, SADER L T, SILVA E L. Effect of substrate concentration on dark fermentation hydrogen production using an anaerobic fluidized bed reactor [ J ]. Applied Biochemistry & Biotechnology,2012,166 ( 5 ) : 1248 - 1263.
  • 7ZHU G F, LI J Z, LIU C X. Fermentative hydrogen production from soybean protein processing wastewater in an anaerobic b~fled reactor using anaerobic mixed consortia [ J].Applied Biochemistry and Biotechnology,2012,168 ( 1 ) :91 - 105.
  • 8李亚新,岳秀萍.厌氧序批式反应器(ASBR)的六大优点[J].中国给水排水,2008,24(4):27-30. 被引量:12
  • 9郭婉茜,任南琪,王相晶,向文胜,曲媛媛.新型生物制氢反应器的运行及产氢特性[J].太阳能学报,2009,30(3):397-401. 被引量:8
  • 10刘强,许惠,李蜜,徐质轶,钱光人.EGSB厌氧发酵垃圾渗滤液制氢的启动特性研究[J].环境科学,2009,30(8):2491-2496. 被引量:3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部