期刊文献+

一种基于元胞自动机的机器人运动规划算法 被引量:1

Cellular Automata Model's Application in Modular Self-Reconfiguration Planning
下载PDF
导出
摘要 利用元胞自动机模型对周围环境已知的机器人的运动进行规划。对机器人所在空间建模后,通过演化规则计算最短路径,使机器人成功避开障碍到达终点。实验结果表明机器人能快速搜索到无碰路径,证明该算法的可行性和有效性。 This paper presents an algorithm using cellular automata to for the solution of the path planning problem for a mobile robot which is in the known environment. After setting up a model, we use rules to compute the shortest path for robot to reach the final point.' The result of experiment shows that robots can search the shortest path without collision, and the feasibility and validity of the research.
作者 纪萃萃
出处 《山东教育学院学报》 2009年第3期84-85,91,共3页 Journal of Shandong Education Institute
关键词 元胞自动机 机器人 已知环境 运动规划算法 Cellular Automata Robot Known environment Locomotion algorithm
  • 相关文献

参考文献4

二级参考文献23

  • 1王宁,唐伯雁,刘荣.被动吸附式小型爬壁机器人开发[J].微计算机信息,2005,21(08X):83-84. 被引量:6
  • 2马兆青,袁曾任.基于栅格方法的移动机器人实时导航和避障[J].机器人,1996,18(6):344-348. 被引量:91
  • 3蒋新松.未来机器人技术发展方向的探讨[J].机器人,1996,18(5):285-291. 被引量:45
  • 4王越超.多机器人协作系统研究:博士论文[M].哈尔滨工业大学,1999..
  • 5Matthew Goodman, Gorden Wyeth. Investigation of Floor Coverage Algorithms for Autonomous Vacuum Cleaner.
  • 6Kruusmaa M,Willemson J.Covering the path space:a case base analysis for mobile robot path planning[J].Knowledge-Based Systems,2003,16(5/6):235-242.
  • 7Koeing S,Likhachev M.Improved fast replanning for robot navigation in unknown terrain[C].Washington DC:Proceedings2002 IEEE International Conference on Robotics and Automation,2002.
  • 8Podsedkowski L,Nowakowski J,Idzikowski M,et al.A new solution for path planning in partially known or unknown environment for nonholonomic mobile robots[J].Robotics and Autonomous Systems,2001,34(2/3):145-152.
  • 9Low K H,Leow W K,Ang Jr M H.A hybrid mobile robot architecture with integrated planning and control[C].New Yerk:Proceedings of the International Conference on Autonomous Agents,2002.
  • 10Gat E.Three-layer architecture,artificial intelligence and mobile robots[M].London:The MIT Press,1998.

共引文献367

同被引文献14

  • 1Thrun S, Fox D, Burgard W, et al. Robust Monte Carlo localiza- tion for mobile robots[J]. Artificial Intelligence, 2001, 128(1/2): 99-141.
  • 2Tardos J D, Neira J, Newman P M, et al. Robust mapping and localization in indoor environments using sonar data[J]. Inter- national Journal of Robotics Research, 2002, 21 (4): 311-330.
  • 3Cox I J, Wilfong G T. Autonomous robot vehicles[M]. Berlin, Germany: Springer-Verlag, 1990.
  • 4Doucet A, de Freitas N, Murphy K, et al. Rao-Blackwellised particle filtering for dynamic Bayesian networks[C]//16th An- num Conference on Uncertainty in Artificial Intelligence. Burlington, USA: Morgan Kaufmann Publishers, 2000: 176- 183.
  • 5Nalpantidis L, Sirakoulis G C, Carbone A, et al. Computation- ally effective stereovision SLAM[C]//IEEE International Con- ference on Imaging Systems and Techniques. Piscataway, USA: IEEE, 2010: 458-463.
  • 6Boukas E, Kostavelis I, Gasteratos A, et al. Robot guided crowd evacuation[J]. IEEE Transactions on Automation Science and Engineering, 2015, 12(2): 739-751.
  • 7Schiff J L. Cellular automata: A discrete view of the world[M]. USA: Wiley-Interscience, 2008.
  • 8Thrun S, Burgard W, Fox D. Probabilistic robotics[M]. Cam- bridge, USA: MIT Press, 2005.
  • 9Stachniss C. Robotic mapping and exploration[M]. Berlin, Ger- many: Springer-Verlag, 2009.
  • 10Juchmes R, Leclercq P, Azar S. A freehand-sketch environment for architectural design supported by a multi-agent system[J]. Computers and Graphics, 2005, 29(6): 905-915.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部