期刊文献+

基于虚拟信息的单样本分块人脸识别 被引量:1

Sub-block face recognition based on virtual information with one training image per person
下载PDF
导出
摘要 在单样本人脸识别中,由于训练样本的数量受限,充分利用样本的信息就显得十分重要;针对这种情况,通过采用旋转和反转原始图像的方法增加样本信息,提出了基于虚拟信息的单样本分块人脸识别方法,充分利用了样本的整体信息和局部信息。实验表明,在对人脸图像进行识别时取得了较好的效果,在一定程度上克服了单样本下姿态对识别效果的强烈影响。 As the number of training samples limited in the face recognition with one training sample per person,it is quite important to make full use of the information of the samples.Aiming at this situation,a method of sub-block face recognition based on virtual information with one training image per person is proposed,which makes the best of the globe and local information of the samples.Compared by the examples,the proposed method attains a better result when recognizes face image.At a certain extent,it can overcomes the intensive influence of pose to the recognition effect.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第19期146-149,共4页 Computer Engineering and Applications
关键词 虚拟样本 特征提取 分块 图像旋转 virtual information feature extraction sub-block image circumgyration
  • 相关文献

参考文献8

  • 1周杰,卢春雨,张长水,李衍达.人脸自动识别方法综述[J].电子学报,2000,28(4):102-106. 被引量:156
  • 2李刚,高政.人脸自动识别方法综述[J].计算机应用研究,2003,20(8):4-9. 被引量:43
  • 3Tan Xiao-yang,Chen Song-can.Face recognition from a single image per person : A survey[J].Pattern Recognition, 2006,39 (9) : 1725- 1745.
  • 4Wu Jian-xin,Zhou Zhi-Hua.Face recognition with one training image per person[J].Pattern Recognition Letters,2002,23 (14) : 1711-1719.
  • 5Chen Song-can,Zhang Dao-qiang,Zhou Zhi-hua.Enhanced(PC)2A for face recognition with one training image per person[J].Pattern Recognition Letters,2004,25(10) : 1173-1181.
  • 6孔万增,朱善安.基于切割子模块的单样本人脸识别[J].光电工程,2007,34(8):110-114. 被引量:2
  • 7Turk M,Pentland A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience, 1991,3( 1 ) :71-86.
  • 8Yang J,Zhang D.Two-Dimensional PCA:A new approach to appearance-based face representation and recognition[J].IEEE Transaction on Pattern Analysis and Machine Intellgience,2004,26(1): 131-137.

二级参考文献78

  • 1Lee C H, Kim J S, Park K H. Automatic Human Face Locationin a Complex Background Using Motion and Color Information[ J ]. Pattern Recognition, 1996,29 ( 11 ) : 1877-1899.
  • 2Dal Y, Nakano Y. Face texture Model Based on SGLD and Its Application in Face Detection in a Color Scene [ J ]. Pattern Recognition, 1996,29 (6) : 1007-1017.
  • 3Saber E, et al. Frontal-view Face Detection and Facial Feature Extraction Using Color, Shape and Symmetry Based Cost Functions [ J ] . Pattern Recognition Letters, 1998, 19 ( 8 ) : 669-680.
  • 4Zabrodsky H, Peleg S, Avnir D. Symmetry as a Continuous Feature [ J] .IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995,17 ( 12 ) : 1154-1166.
  • 5Reisfield D.Context-free Attentional Operators: The Generalized Symmetry Transform [ J ] .International Journal of Computer Vision, 1995, (17) : 119-130.
  • 6Marques F, Vilaplana V. Face Segmentation and Tracking Basedon Connected Operators and Partition Projection [ J] .Pattern Recognition, 2002,35 ( 3 ) : 601-614.
  • 7Brunelli R, et al. Face Recognition:Features Versus Templates[ J]. IEEE Transactions on PAMI, 1993,15 (10): 1042-1052.
  • 8Birchfield S. An Elliptical Head Tracker[ C ]. 31 st Asilomar Conference on Signals, Systems and Computers, 1997.1710-1714.
  • 9Tang C Y, Chen Z, Huang Y P. Automatic Detection and Tracking of Human Heads Using an Active Stereo Vision System[J]International Journal of Pattern Recognition and Artificial Intelligence ,2000,14(2) : 137-166.
  • 10Yuille A L. Deformable Templates for Face Recognition[J] .Journal of Cognitive Neuroscience, 1991,3( 1 ) :59-70.

共引文献189

同被引文献8

  • 1ZHAO W, CHELLAPPA R, ROSENFELD A, et al. Face recgnition: a literature survey[J]. ACM Computing Surveys, 2003,35 (4) : 399-458.
  • 2TURK M, PENTLAND A. Eigenfaces for recognition[J]. Journal of Cognitive Neuroscience, 1991,3 ( 1 ) :71 - 86.
  • 3TURK M, PENTLAND A. Face recognition using eigenfaces[A]. Proceedings of IEEE Computer Vision and Pattern Recognition[C]. Hawaii, USA: IEEE CS Press, 1991 586-591.
  • 4ZHANG Dao Qiang, ZHOU Zhi Hua. (2D)2PCA:Two- directional two-dimensional PCA for efficient face representation and recognition [J ]. Neurocomputing, 2005 (69) : 224- 231.
  • 5BELHUMEUR V, HESPANHA J, KRIEGMAN D. Eigenfaces vs .fisherfaces: recognition using class specific linear projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19(7):711-720.
  • 6LU Chong, LIU Wan Quan, SEN Jian. An face recognition with only one training sample[J]. Proceedings of the 25th Chinese Control Conference 7-11 August, 2006.
  • 7ZHANG D, CHEN S, ZHOU Z H. A new face recognition method based on SVD perturbation for single example image per person[J].Applied Mathematics and computation, 2005,163 (2) : 895 - 907.
  • 8杨琼,丁晓青.对称主分量分析及其在人脸识别中的应用[J].计算机学报,2003,26(9):1146-1151. 被引量:35

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部