期刊文献+

基于多阈值弱学习的Adaboost检测器 被引量:3

Adaboost detector based on multiple thresholds for weak classifier
下载PDF
导出
摘要 近年来基于Adaboost的人脸检测算法因其快速和可接受的检测率得到了成功的应用。但采用单阈值作弱分类器显得太弱难于适应复杂的统计分布,且训练过程较慢收敛。为克服这些困难,采用分类树作弱学习器,该学习器以贪婪的的方法用误差测度减少最大化的划分准则划分节点,并由此生成弱分类器,然后采用RAB或GAB方法在给定数据和标签的训练集上将这些弱分类器提升为强分类器。实践结果表明采用多阈值作弱分类器能显著提高分类器性能。 Recently the human face detection system based on Adaboost is successfully used in application areas because of its high speed and accepted detection rates.However,the Adaboost algorithms using the single threshold weak classifiers are too weak to fit complex distributions,and the training procedure is hard to converge.To overcome this dilemma,this paper provides classification trees as a weak learner.The learner greedily splits the node which causes the biggest reduction in measure of error as the partition criteria and builds a weak classifier.Then boosts a weak classifier using real Adaboost or gentle Adaboost methods on training dataset given in data and labels.Experimental resuhs show that using multiple thresholds for the weak classifier can improve the performance of the classifier significantly.
作者 钟向阳 凌捷
出处 《计算机工程与应用》 CSCD 北大核心 2009年第19期160-162,171,共4页 Computer Engineering and Applications
基金 广东省科技攻关计划(No.2007B010200071 No. 2005B10101067)~~
关键词 人脸检测 ADABOOST算法 弱分类器 平缓的Adaboost face detection Adaboost algorithm weak classifier gentle Adaboost
  • 相关文献

参考文献8

  • 1Viola P,Jones M.Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the IEEE CVPR.Kauai,Hawaii,USA: IEEE, 2001:511-518.
  • 2Schapire R E,Singer Y.Improved boosting algorithms using confidence-rated predictions[J].Machine Learning, 1999,37(3) :297-336.
  • 3Wu Jian-xin,Rehg J M,Mullin M D.Learning a rare event detection cascade by direct feature selection[C]//Annual Conference on Neural Information Processing Systems (NIPS),British Columbia, CA,2004: 1523-1530.
  • 4Wu Bo,Ai Hai-zhou,Huang Chang.LUT-based adaboost for gender classification[C]//International Conference on Audio-and Video-Based Biometric Person Authentication,Guildford,UK,2003:104- 110.
  • 5武勃,黄畅,艾海舟,劳世竑.基于连续Adaboost算法的多视角人脸检测[J].计算机研究与发展,2005,42(9):1612-1621. 被引量:66
  • 6Friedman J,Hastie T,Tibshirani R.Additive logistic regression:A statistical view of boosting[J].Annals of Statistics,2000,28 (2) : 337-374.
  • 7Liu C,Shum H Y.Kullback-leibler boosting[C]//IEEE Conf on Computer Vision and Pattern Recognition,2003:587-594.
  • 8Moghaddam B,Yang M H.Gender classification with support vector machines[J].IEEE Trans on PAMI, 2002,24(5 ) : 707-711.

二级参考文献13

  • 1B. Moghaddam, A. Pentlan. Beyond linear eigenspaces: Bayesian matching for face recognition. In: Face Recognition: From Theory to Application. New York: Springer-Verlag 1998. 230~243.
  • 2H. A. Rowley. Neural network-based human face detection:[Ph. D. dissertation]. Pittsburgh, USA: Carnegie Mellon University, 1999.
  • 3R. Feraud, O.J. Bernier, Jean-Emmanuel Viallet, et al. A Fast and accurate face detector based on neural networks. IEEE Trans.Pattern Analysis and Machine Intelligence, 2001, 23(1): 42~53.
  • 4H. Schneiderman, T. Kanade. A statistical method for 3D object detection applied to faces and cars. IEEE Conf. Computer Vision and Pattern Recognition, Hilton Head Island, South Carolina,2000.
  • 5E. Osuna, R. Freund, F. Girosi. Training support vector machines: An application to face detection. IEEE Conf. Computer Vision and Pattern Recognition, Puerto Rico, 1997.
  • 6V.P. Kumar, T. Poggio. Learning-based approach to real time tracking and analysis of faces. http: ∥ cbcl. mit. edu/cbcl/publications/ai- publications, 1999.
  • 7P. Viola, M. Jones. Rapid object detection using a boosted cascade of simple features. IEEE Conf. Computer Vision and Pattern Recognition, Kauai, Hawaii, USA, 2001.
  • 8Y. Freund, R. E. Schapire. Experiments with a new boosting algorithm. In: Proc. the 13th Conf. Machine Learning. San Francisco: Morgan Kaufmann, 1996. 148~156.
  • 9R.E. Schapire, Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 1999, 37 (3) .297~336.
  • 10Y. Li, S. Gong, H. Liddell. Support vector regression and classification based multi-view face detection and recognition.IEEE Conf. Automatic Face and Gesture Recognition, Grenoble,France, 2000.

共引文献65

同被引文献28

引证文献3

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部