期刊文献+

梯度自适应的图像复原方法 被引量:2

Gradient adaptive image restoration method
下载PDF
导出
摘要 图像复原的方法有很多,这些方法所面临的主要困难是在抑制噪声时如何均匀地增强图像结构。本文介绍了一种基于图像梯度场进行图像复原处理的方法,该方法不像其他传统的方法直接操作图像的灰度,而是通过增强梯度场,在图像复原的同时,不会丢失图像的边缘信息。针对梯度对噪音非常敏感的特点,采用基于方向的各向同性滤波核方法,这可以抑制噪声区域,而同时又增强图像中的边缘部分。调整后的梯度场,通常是不可积的。通过求解泊松方程,便可以从修改过的梯度场重构复原图像。图像去噪实验说明该方法是有效的。 Various methods have been proposed for image restoration.The main difficulty is how to enhance the structures uniformly while suppressing the noise.This paper tackles this problem in the gradient domain instead of the traditional intensity domain.By enhancing the gradient field,this method can enhance the structure uniformly without overshooting at the boundary. Because the gradient field is very sensitive to noise,an orientation-isotropy adaptive filter is applied to the gradient field, suppressing the gradients in the noise regions while enhancing along the object boundaries.Thus a modulated gradient field is obtained,which is usually not integrable.The enhanced image can be reconstructed from the modulated gradient field with least square errors by solving a poisson equation.Experiments on noisy images show the efficiency of the method.
作者 方欣
机构地区 湖南理工学院
出处 《计算机工程与应用》 CSCD 北大核心 2009年第19期174-176,188,共4页 Computer Engineering and Applications
关键词 梯度 图像复原 图像噪声 结构张量 gradient image restoration image noise structure tensor
  • 相关文献

参考文献9

  • 1Donoho D.De-noising by soft-thresholding[J].IEEE Trans Inform Theory, 1995,41 (3) : 613-627.
  • 2Starek J L,Candes E J,Donoho D L.The curvelet transform for image denoising [J].IEEE Transactions on Image Processing, 2002,11 (6) : 670-684.
  • 3Do M N,Vetterli M.The contourlet transform:An efficient directional multiresolution image representation[J].IEEE Transaction on Image Processing,2005,14(2):2091-2106.
  • 4Perona P,Malik J.Scale-space and edge-detection using anisotropic diffusion[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990,12(7 ) : 629-639.
  • 5Weickert J.Coherence-enhancing diffusion of colour images[C]//Proe VII National Symposium on Pattern Recognition and Image Analysis, 1997,1 : 239-244.
  • 6Fattal R,Lischinski D,Werman M.Gradient domain high dynamic range compression[C]//ACM Transactions on Graphics (TOG), 2002, 21(3 ) : 249-256.
  • 7Wang H,Raskar R,Ahuja N.High dynamic range video using split aperture camera[C]//IEEE 6th Workshop on Omnidirectional Vision,Camera Networks and Non-classical Cameras,Washington, DC, USA, 2005.
  • 8Takeda H,Farsiu S,Milanfar P.Kernel regression for image processing and reconstruction[J].IEEE Transactions on Image Processing, 2007,16(2) : 349-366.
  • 9Wang Z,Bovik A C,Sheikh H R,et al.Image quality assessment: From error visibility to structural similarity[J].IEEE Transactions on Image Processing, 2004,13 (4) : 600-612.

同被引文献23

  • 1范延滨,刘彩霞,贾世宇,潘振宽.GVF Snake模型中初始轮廓线设置算法的研究[J].中国图象图形学报,2008,13(1):58-63. 被引量:16
  • 2沈兰荪,蔡轶珩,张新峰.中医舌像的采集与分析[M].北京:北京工业大学出版社,2007:120-121.
  • 3Leroy B."Multi-resolution"Algorithms for Active Contour Models[C] //The 12th Int.Conf.On Analysis and Optimization of systems.[s.l.] :[s.n.] ,1996.
  • 4Cohen L D,Cohen I.Finite Element Methods for Active Contour Models and Balloons for 2D and 3D Images[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1993,15(11):211-218.
  • 5Cohen L D.On Active Contour Models and Balloons[J].CVGIP:Image Understand,1993,53(2):1131-1147.
  • 6Xu Chenyang,Prince J L.Snakes,shapes,and gradient vector flow[J].IEEE Transaction on Image Processing,1998,7(3):359-369.
  • 7Li Jin,Xu Junhong.Contour Segmentation Algorithm of Multi-scale GVF Snake[C] //Mechatronics and Automation,IEEE International Conference on Mechatronics and Automation.Luoyang,China:[s.n.] ,2006:537-542.
  • 8朱立新,王平安,夏德深.基于梯度场均衡化的图像对比度增强[J].计算机辅助设计与图形学学报,2007,19(12):1546-1552. 被引量:37
  • 9侯迎宾,肖扬.改进的Snake模型及其在图像边缘提取中的应用[J].数据采集与处理,2008,23(2):153-157. 被引量:5
  • 10王鹤蒙,张艳,周昌乐.舌像轮廓提取的优化算法[J].微计算机信息,2008,24(16):275-276. 被引量:5

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部