期刊文献+

一种动态未知环境下的机器人路径搜索方法

Method of path-finding for mobile robot in unknown dynamic environment
下载PDF
导出
摘要 提出了一种新的路径搜索算法——"触觉感知法"来实现机器人在未知静态与动态环境情况下的路径搜索。该方法不需要提供地图信息,机器人仅收集目标点的距离和方位信息以及通过自带传感器作为触觉器收集周围局部环境信息。机器人以BP神经网络作为决策器,经过训练,可以在静态和动态环境中搜索出一条光滑无碰撞且便捷并能有效避开动态障碍物的运动轨迹。对所提出的方法进行了仿真实验,仿真结果表明算法在静态和动态环境下均能有高效率的路径搜索表现。 An improved model of neural network named "tactile sensation perception" is proposed for mobile robot to find a path in unknown environment with static and dynamic obstacles.In the proposed model,robots only need distance and orient of the target and information of neighbors,which is collected by inner sensors without the information of map.BP neural networks is the decision center of robot.Robot can provide a proper trail with free-collision in the process of exploring in both static and dynamic environments after training.With simulations ,the experimental results demonstrate the efficiency of the method.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第19期201-203,共3页 Computer Engineering and Applications
基金 国家自然科学基金(No.60773047) 湘潭大学博士基金项目(No.05QDZ23) 湖南省重点学科项目资助~~
关键词 神经网络 机器人 路径搜索 动态环境 neural networks robot path-finding dynamic environment
  • 相关文献

参考文献6

  • 1Hwang Y K,Ahuja N.A potential field approach to path planning[J]. IEEE Transactions on Robotics and Automation, 1992,8( 1 ):23-32.
  • 2Sadati N,Taheri J.Genetic algorithm in robot path planning problem in crisp and fuzzified environments[C]//IEEE International Conference on Irtdustrial Technology,2002( 1 ) : 11-14.
  • 3Yang S X, Luo C.A neural network approach to complete coverage path planning[J].IEEE Transactions on Systems, Man and Cybernetics, 2004,1 (34) : 718-724.
  • 4Del H A R,Medrano M N,Martin D B B.A simple approach to robot navigation based on cooperative neural networks[C]//IEEE 28th Annual Conference of the Industrial Electronics Society, 2002,3 : 2421-2426.
  • 5朱庆保.全局未知环境下多机器人运动蚂蚁导航算法[J].软件学报,2006,17(9):1890-1898. 被引量:33
  • 6樊长虹,陈卫东,席裕庚.未知环境下移动机器人安全路径规划的一种神经网络方法[J].自动化学报,2004,30(6):816-823. 被引量:11

二级参考文献12

  • 1Latombe J C. Robot motion planning. Holland: Kluwer Academic Publishers, 1991, 1-50
  • 2Kathib O. Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robot Research, 1986, 5(1): 90-98
  • 3Glasius R, Komoda A. neural network dynamics for path planning and obstacle avoidance. Neural Networks,1995, 8(1): 125-133
  • 4Yang S X, Max M. An efficient neural network method for real-time motion planning with safety consideration.Robotics and Autonomous Systems, 2000, 32(1): 115-128
  • 5Yang S X, Max M. Neural network approaches to dynamic collision-free trajectory generation. IEEE Transactions on System, Man, and Cybernetics, Part B, 2001, 31(3): 302-318
  • 6Connolly C I. On the application of harmonic functions to robotics. Journal of Robotic Systems, 1993, 10(1):931-946
  • 7Liao Xiao-Xin. Theory and Application of Stability for Dynamical Systems. Beijiong: National Defense Industry Press, 2000. 9-10(in Chinese)
  • 8Shih F Y, Liu J J. Size-invariant four-scan Euclidean distance transformation. Pattern Recognition, 1998,31(11): 1761-1766
  • 9Li Qing-Yang. Principles of Numerical Computation. Beijing: Tsinghua University Press, 2000. 171-181,201-204(in Chinese)
  • 10Borenstein J, Koren Y. The vector field Histogramfast obstacle avoidance for mobile robots. IEEE Transactions on Robotics and Automation, 1991, 7(3): 278-288

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部