期刊文献+

基于TV正则化和局部约束的遥感图像恢复(英文) 被引量:9

Remote Sensing Image Restoration Based on TV Regularization and Local Constraints
下载PDF
导出
摘要 阐述了基于总变分理论和基于像元亮度局部约束的退化图像恢复算法,为利用二者的优点获得更好的恢复效果.把总变分方法和局部约束方法结合在一起,提出了一种新的混合恢复算法.对最小二乘问题进行总变分正则化约束,形成迭代公式,在迭代过程中对所获得的结果利用局部均值和局部方差进行局部约束.实验中对退化的遥感图像分别用总变分约束方法恢复和本文提出的方法进行恢复,结果表明,该方法具有良好的图像恢复能力,图像恢复效果有了明显的提高. Image restoration algorithms based on total variation theory and pixels intensity local constrains method were introduced. To obtain a better restored effect, a novel hybrid algorithm was presented to estimate the original image from the degraded one. Total variation (TV) regularization term was added into the object function to form the iteration formula. And, local mean and local variance were used to constraint the solution. In numerical experiment, the degraded images were restored using the TV method and the proposed method. The results show that better performance of the proposed approach can be obtained.
出处 《光子学报》 EI CAS CSCD 北大核心 2009年第6期1577-1580,共4页 Acta Photonica Sinica
基金 Supported by Doctoral Funds from Education Ministry(2006020511)
关键词 图像恢复 总变分 局部约束 边缘保持 Image Restoration Total Variation Local Constraints Edge Preservation
  • 相关文献

参考文献6

二级参考文献31

  • 1李盛阳,朱重光.DMC卫星图像MTF分析及其复原方法研究[J].遥感学报,2005,9(4):475-479. 被引量:20
  • 2Elad M,Feuer A.Restoration of a Single Super-resolution Image from Several Blurred,Noisy,and Undersampled Measured Images [J].IEEE Transactions on Image Processing,1997,6(12):1646-1658.
  • 3Shekarforoush H,Chellappa R.Data-driven Multi-channel Super-resolution with Application to Video Sequences [J].Journal of the Optical Society of America A,1990,16(3):481-492.
  • 4Ford C,Etter D M.Wavelet Basis Reconstruction of Nonuniformly Sampled Data [J].IEEE Transactions on Circuits and Systems-II:Analog and Digital Signal Processing,1998,45(8):1165-1168.
  • 5Nguyen N,Milanfar P.A Wavelet-based Interpolation Restoration Method for Superresolution [C].Invited Paper,Circuits,Systems,and Signal Processing,2000,19(4(Special Issue on Advanced Signal and Image Reconstruction)):321-338.
  • 6Kingsbury N G.Complex Wavelets for Shift Invariant Analysis and Filtering of Signals [J].Applied Computational and Harmonic Analysis,2000,10(3):234-253.
  • 7House Image[EB/OL].http://www.cs.kuleuven.ac.be/~maarten/ image/ house.tif,2003-12-11.
  • 8Tsai R Y, Huang T S. Multiple Frame Image Restoration and Matching[C]. Advances in Computer Vision and Image Processing, Greenwich, 1984
  • 9Tekalp A M, Ozkan M K, Sezan M I. High-resolution Image Reconstruction from Lower-resolution Image Sequences and Space-varying Image Restoration[C].The IEEE International Conference on Acousics, Speech and Signal Processing, San Francisco, CA, 1992
  • 10Davila C E. Efficient Recursive Total Least Squares Algorithms for FIR Adaptive Filtering [J].IEEE Trans on Signal Processing, 1994, 42(2) : 268-280

共引文献35

同被引文献78

引证文献9

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部