期刊文献+

有限可解群的Fuzzy子群的阶数及其等价类数 被引量:2

On the Number of Equivalent Classes of Fuzzy Subgroups of a Finite Solvable Group
下载PDF
导出
摘要 定义Fuzzy子群的一种等价关系,即:如果两个Fuzzy子群的水平集的阶构成的集合相等,就称这两个Fuzzy子群等价,并且通过研究群的子群列以及群阶的因数列和商数列找出了有限可解群的极大Fuzzy子群和Fuzzy子群的阶和等价类数的求解公式,并给出了二者之间的关系式。 In this paper, we define an equivalent relationship on fuzzy subgroups. That is, if the set consisting of the order of the level sets of fuzzy subgroup is equal with the others , they are equivalent. By means of studying the composition series and the quotient series of a group as well as the divisor series and the quotient series of a number, we obtain the formulas to find the number of equivalent classes of maximal fuzzy subgroups and fuzzy groups of a finite solvable group, and have established the relationship between them.
出处 《模糊系统与数学》 CSCD 北大核心 2009年第3期31-34,共4页 Fuzzy Systems and Mathematics
基金 黑龙江省教育厅科研项目(11511347) 黑龙江科技学院引进高层次人才科研启动基金资助项目(06-12506-126)
关键词 有限可解群 水平集的阶 等价关系 极大F子群 F子群 因数列 商数列 极大因数列 Finite Solvable Group The Order of a Level Set Equivalent Relationship~ Maximal FuzzySubgroup Quotient Series of a Group Quotient Series of a Number Maximal Divisor Series of a Number
  • 相关文献

参考文献9

  • 1Zadeh L A. Fuzzy set[J]. Inform. Control, 1965,8 : 338-353.
  • 2Rosenfeld A. Fuzzy groups[J]. J. Math. Anal. Appl, 1971,35 : 512-517.
  • 3Dixit V N, et al. Level subgroups and union of fuzzy subgroups[J]. Fuzzy Sets and Systems,1990,37:359-371.
  • 4Das P S. Fuzzy groups and level subgroups[J]. J. Math. Anal. Appl,1981,84:264-269.
  • 5Zhang Y J, et al. A note on equivalence relation of fuzzy subgroups[J]. Fuzzy Sets and Systems, 1998,95:34-247.
  • 6Laszlo F. Structure and construction of fuzzy subgroups of a group[J]. Fuzzy Sets and systems, 1992,51:105-109.
  • 7宋明娟,蔡吉花.模糊子群的阶的注记(英文)[J].模糊系统与数学,2003,17(2):92-95. 被引量:5
  • 8宋明娟.有限循环群的Fuzzy子群的等价类数[J].模糊系统与数学,2003,17(3):77-79. 被引量:7
  • 9宋明娟,王佳秋.有限Abel群的Fuzzy子群的等价分类及其类数[J].模糊系统与数学,2005,19(3):29-32. 被引量:5

二级参考文献16

  • 1lászló F.Structure and construction of fuzzy subgroups of a group[J].Fuzzy Sets and Systems,1992,51:105-109.
  • 2(美)赫尔.群论[M].北京:科学出版社,1982..
  • 3熊全淹.近世代数(第二版)[M].上海:上海科学出版社,1978..
  • 4Das P S. Fuzzy groups and level subgroups[J]. J. Math. Anal. Appl. , 1981,84:264-269.
  • 5Làszló F. Structure and construction of fuzzy subgroups of a group[J]. Fuzzy Sets and Systems, 1992,51:105-109.
  • 6Zhang Y D. Construction of finite groups[M]. Beijing:Seience Publishing House,1982.
  • 7Zhang W X, et al. The introduction of fuzzy mathematics[M]. Xi'an:Xi'an Jiaotong University Publishing House, 1991.
  • 8Das P S.Fuzzy groups and level subgroups[J].J Math Anal Appl,1981,84:264-269.
  • 9lászlà F.Structure and construction of fuzzy subgroups of a group[J].Fuzzy Sets and Systems,1992,51:105~109.
  • 10Zhang Y J,et a1.A note on an equivalence relation on fuzzy subgroups[J].Fuzzy Sets and Systems,1998,95: 234~247.

共引文献6

同被引文献13

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部