期刊文献+

一种新的中介真值程度的度量方法及模糊谓词的分解 被引量:2

One New Method of Measure of Medium Truth Scale and Decomposition of Fuzzy Predicate
下载PDF
导出
摘要 以中介数学系统为背景,为处理现实生活中普遍存在的模糊现象提供一种度量逻辑真值程度的新方法。在建立了谓词的标准度概念后,描述了谓词的真值与对应的数值区域之间的关系;采用距离的概念,并以对应谓词真值的数值区域长度为基准,给出了一维情形下的个体真值程度函数以及基于真值程度函数的一元谓词的表示法。又在提出了λ-真值程度截集、数与谓词的乘积概念后,给出了关于一元模糊谓词的中介分解定理,从而建立了一元模糊谓词与清晰谓词间的量化关系。应用示例表明:真值程度函数的定义具有计算机可以处理的定量形式且具有客观性和普适性的特点。 To process fuzzy phenomenon existing widely in social life, one new method with measuring truth grade, having background of medium mathematics system, is proposed. After establishing standard pointer of the predicate, the relation between truths of the predicate and areas of numerical value is described. Adopting the concept of distance and using length of numerical value interval to discriminate predicate truths as norm, the individual truth grade function, on which the method of representation of one-variate predicate that is based,are presented. Additional, the ~, truth-grade-cut set and the product of number with the predicate are advanced to give medium decomposition theorem about one-variate fuzzy predicate. Hence the quantitative relation between one-variate fuzzy predicate and distinct predicate is con- structed. The given demonstration show that the definition of truth grade function possesses quantitative form processed by computers and features of objective property and universal adaptability.
出处 《模糊系统与数学》 CSCD 北大核心 2009年第3期115-121,共7页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(60575038)
关键词 度量 真值程度 模糊现象 中介数学系统 Measure Truth Grade Fuzzy Phenomenon Medium Mathematical System
  • 相关文献

参考文献16

  • 1Zadeh L. Fuzzy sets[J]. Information and Control, 1965,8 : 338-353.
  • 2Pawlak Z. Rough sets[J]. Internat J Info. Computer Sci. , 1982,11 (5):341- 356.
  • 3Pawlak Z. Rough logic[J]. Bull. Polish Acad. Sci. Tech. ,1987,35(5-6) :253-258.
  • 4Xiao X A, Zhu W J. Proposition calculus system of medium logic(I)[J]. Journal of Mathematics Research Exposition, 1988,8(2) : 327-332
  • 5Xiao X A, Zhu W J. Proposition calculus system of medium logic(II)[J]. Journal of Mathematics Research Exposition, 1988,8(3) :457-446
  • 6Xiao X A, Zhu W J. Proposition calculus system of medium logic(III)[J]. Journal of Mathematics Research Exposition, 1988,8(4) : 617-613.
  • 7Zhu W J, Xiao X A. Predicate calculus system of medium logic(I)[J]. Journal of Nanjing University, 1988, 24(2):583-595
  • 8Zhu W J, Xiao X A. Predicate calculus system of medium logic(II)[J]. Journal of Nanjing University, 1989,25(2):165-176.
  • 9Xiao X A,Zhu W J. An extension of the proposition calculus system of medium logic(I)[J]. Journal of Nanjing University, 1990,26 (4) : 564-574
  • 10Xiao X A,Zhu W J. An extension of the proposition calculus system of medium logic(II)[J]. Journal of Nanjing University,1991,27 (2) : 209-220.

二级参考文献16

  • 1刘叙华.模糊数学与模糊推理[M].长春:吉林大学出版社,1989.66-112.
  • 2邱伟德 邹晶.中介谓词演算系统MF的归结原理.上海工业大学学报,1990,11(2):5-11.
  • 3朱梧槚 肖奚安.中介逻辑的命题演算系统(Ⅰ)[J].自然杂志,1985,8(4):315-315.
  • 4Zadeh L..Fuzzy sets.Information and Control,1965,8:338~353
  • 5Pawlak Z..Rough sets.International Journal of Information and Computer Sciences,1982,11(5):341~356
  • 6Pawlak Z..Rough logic.Bulletin of the Polish Academy of Sciences,Technical Sciences,1987,35(5/6):253~258
  • 7朱梧槚 肖奚安.数学基础与模糊数学基础[J].自然杂志,1984,(7):723-726.
  • 8Xiao Xi-An,Zhu Wu-Jia.A system of medium axiomatic set theory.Science in China (A),1988,(11):1320~1335
  • 9Bellman R.E,Zadeh L..Decision-making in a fuzzy environment.Manage Science,1970,17:B-141~B-164
  • 10Krishnapuram R,Medasani S,Jung Sung-Hwan,Choi Young-Sik,Balasubramaniam R..Content-based image retrieval based on a fuzzy approach.IEEE Transactions on Knowledge and Data Engineering,2004,16(10):1185~1199

共引文献90

同被引文献39

  • 1洪龙,肖奚安,朱梧槚.中介真值程度的度量及其应用(I)[J].计算机学报,2006,29(12):2186-2193. 被引量:79
  • 2洪龙,肖奚安,朱梧槚.中介真值程度的度量及其应用(Ⅱ)[J].计算机学报,2007,30(9):1551-1558. 被引量:33
  • 3Zhenghua Pan, Shengli Zhang. Five Kinds of Contradictory Relations and Opposite Relations in Inconsistent Knowledge [ C ]//Proceedings of IEEE-Fourth International Conference on Fuzzy Systems and Knowl- edge Discovery (FSKD'07), 2007,4:761-764.
  • 4Zhenghua Pan. Contradictory Relation and Opposite Relation in Web Knowledge[ C]//Proceedings of IEEE-the 2nd International Confer- ence on Semantics, Knowledge and Grid ( SKG2007 ), 2007:157 - 162.
  • 5Zhenghua Pan. Fuzzy Set With Three Kinds of Negations in Fuzzy Knowledge Processing [ C ]//Proceedings of The Ninth International Conference on Machine Learning and Cybernetics,2010, 5 (6) : 2730 - 2735.
  • 6朱梧掼,肖奚安.中介逻辑命题演算系统(Ⅰ),(Ⅱ),(Ⅲ)[J].自然杂志,1985,8(4):315,8(5):394,8(6):473.
  • 7肖奚安,朱梧顿.中介逻辑谓词演算系统(I),(II)[J].自然杂志,1985,8(7):540,8(8):601.
  • 8L A Zadeh. Fuzzy Sets[J].Information and Control, 1965, 8(3) : 338 -353.
  • 9G Wagner. Vivid Logic: Knowledge-Based Reasoning with Two Kinds of Negation [ M ]. Heidelberg : Springer-Verlag, 1994:89 - 110.
  • 10Zhu Wujia, Xiao Xian. An extension of the propositional calculus sys- tem of medium logic[ J]. Journal of Nanjing University, 1991, 2 : 201 - 221.

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部