摘要
利用结构元方法定义一种模糊数排序准则,提出将目标函数和约束条件中都含有三角模糊数的全系数模糊线性规划等价转化为经典线性规划的方法,并证明其合理性。与其它方法相比较,该方法证明了得到的解优于已有其它方法的解,并且约束条件少,运算方法简便。将本文的方法运用到数值算例中,进一步表明了提出方法的有效性和广泛性。
All-Coefficient-Fuzzy linear programming with target function and constraint coefficients of triangle fuzzy numbers is transformed into classical linear programming by defines a new ranking criterion of fuzzy numbers with the method of structured element, and proves rationality of the theory. Compared with the existing methods, firstly, the obtained solution is superior to the other solutions, secondly, this method has fewer number of constraints, thirdly, the simple of calculation. This method is compared with the existing methods, effectiveness and extensive application of this method are illustrated.
出处
《模糊系统与数学》
CSCD
北大核心
2009年第3期139-144,共6页
Fuzzy Systems and Mathematics
基金
辽宁省教育厅高等学校科学研究项目(20060377)
关键词
模糊结构元
三角模糊数
排序准则
模糊线性规划
Fuzzy Structured Element
Triangle Fuzzy Number
Ranking Criterion
Fuzzy Linear Programming