摘要
基于纳什议价合作博弈论,研究了认知无线电网络(CRN)中的功率控制问题.设计了一种基于信干扰比(SINR)的效用函数,并提出一种基于纳什议价解(NBS)的分布式功率控制算法,可保证系统的帕雷托最优性和认知用户之间的公平性.采用拉格朗日松弛技术获得了各个认知用户的最优传输功率策略,并结合定点迭代技术,大大降低功率控制问题的复杂度.仿真结果表明,所提出算法实现简单且收敛速度较快、鲁棒性较好,与非合作算法相比可以有效改善认知用户之间的公平性和系统的整体性能.
A power control method for cognitive radio networks (CRN) is investigated in the context of cooperative game theory based on the Nash bargaining solution (NBS). A utility function based on signal-to-interference plus noise (SINR) is proposed for this model. Based on the NBS, the power control method is not only consistent with the fairness axioms of game theory, but also provides the power level of users that are Pareto optimal from the point of view of whole system. Introducing the Lagrange operators, the optimal power levels are achieved, and the SINR threshold requirements are satisfied. Simulations show that our algorithm has a faster convergence speed, and compared to reference traditional method, our algorithm can effectively improve the fairness among multiple cognitive users and the overall performance of the whole cognitive system.
出处
《北京邮电大学学报》
EI
CAS
CSCD
北大核心
2009年第3期77-81,共5页
Journal of Beijing University of Posts and Telecommunications
基金
国家杰出青年科学基金项目(60725105)
国家重点基础研究发展计划项目(2009CB320404)
国家自然科学基金项目(60572146)
长江学者和创新团队发展计划项目
高等学校优秀青年教师教学科研奖励计划项目
教育部科学技术研究重点项目(107103)
高等学校创新引智计划项目(B08038)
国家高技术研究发展计划项目(2007AA01Z288)
重点实验室专项基金项目(ISN02080001)
关键词
合作博弈
纳什议价解
功率控制
认知无线电
cooperative game theory
nash bargaining solution
power control
cognitive radio networks