期刊文献+

一类有理差分方程的全局渐近稳定性

Global Asymptotic Stability of a Class of Rational Difference Equation
下载PDF
导出
摘要 研究差分方程xn+1=(fgh+f+g+h+a)/(fg+gh+hf+1+a)(n=0,1,…)的全局渐近稳定性,其中a∈(0,+∞),f=f(xn-r1,…,xn-rk)∈C((0,+∞)k,(0,+∞)),g=g(xn-m1,…,xn-ml)∈C((0,+∞)l,(0,+∞)),h=h(xn-s1,…,xn-sσ)∈C((0,+∞)σ,(0,+∞)),k,l,σ∈{1,2,…},0≤r1<…<rk,0≤m1<…<ml,0≤s1<…<sσ,并且初值为正实数.给出了该方程关于唯一正平衡点=x=1的全局稳定的充分条件,推广了参考文献[5]—[7]中的一些结果. We study global asymptotic for positive solutions to the equation xn+1=fgh+f+g+h+a/fg+gh+hf+1+a(n=0,1,…),where a∈(1,+∞),f=f(x-r1,…,x-rk)∈C((0,+∞)^k,(0,+∞)),g=g(xn-m1,…,xn-ml)∈C((0,+∞)^l,(0,+∞)),h=h(xn-s1,…,xn-sσ)∈C((0,+∞)^σ,(0,+∞)),with k,l,σ∈{1,2,…},0≤r1〈…〈rk,0≤m1〈…〈ml,0≤s1〈…〈sσ and the initial values are positive real numbers. Thesufficient conditions is given under which the unique equilibrium =↑x=1 = 1 of this equation is globally asymptotic stable, which inproves and the corresponding results obtained in the literature [5]-[7].
作者 何延生
出处 《延边大学学报(自然科学版)》 CAS 2009年第2期99-101,共3页 Journal of Yanbian University(Natural Science Edition)
基金 国家自然科学基金资助项目(10661011)
关键词 差分方程 全局渐近稳定性 平衡点 difference equation global asymptotic stability equilibrium
  • 相关文献

参考文献7

  • 1Li X,Zhu D.Two Rational Recursive Sequence[J].Comput Math Appl,2004,47:1487-1494.
  • 2Cinar C.On the Positive Solution of the Difference Equation xn+1=(axn-1)/(1+bxnxn-1)[J].Appl Math Comput,2004,156:587-590.
  • 3Li X.Global Asymptotic Stability in a Rational Equation[J].J Difference Equ App,2003,9:833-839.
  • 4Sun Taixiang,Xi Hongjian.Global Asymptotic Stability of a Higher Order Rational Difference Equation[J].J Math Anal Appl,2007,330:462-466.
  • 5Li X.Global Behavior for Fourth-order Rational Difference Equation[J].J Math Anal Appl,2005,312:555-563.
  • 6Li X.Qualitative Properties for Fourth-order Rational Difference Equation[J].J Math Anal Appl,2005,311:103-111.
  • 7Berenhaut K S,Stevic S.The Global Attractivity of a Higher Order Rational Difference Equation[J].J Math Anal Appl,2007,326(2):940-944.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部