期刊文献+

基于超分辨ISAR成像的飞机目标SVM分类算法 被引量:1

The SVM Classification Method for Airplane Target based on Super-resolution ISAR Imaging
下载PDF
导出
摘要 利用最大熵谱估计方法对4种飞机目标数据进行外推处理,并在此基础上进行拟合成孔径(ISAR)成像。采用了ISAR图像的几何矩、基于几何矩的不变量、形状和量化能量带4个特征,研究了支持向量机的线性和非线性算法原理,提出了基于SVM的飞机目标识别和分类算法,采用了针对多目标分类的M-ary法对飞机进行分类,选取了每个目标的40个不同数据段进行成像,通过与几种常见的BP神经网络算法和RBF神经网络算法比较分析,验证结果表明此方法达到了较好的识别效果,识别率达到97%。 The method of Maximum Entropy Spectrum Estimation is used to extrapolate four airplane data, and ISAR imaging is done on the basis of it. The four characters of ISAR images, i.e. geometric moment, invariants based on geometric moment, shape and quantized energy belt are adopted in the study of the arithmetic theory of linearity and non - linearity about SVM, and a method of target recognition and classification based on SVM is pro- posed. The M - ary method for multi - target classification is used to classify the airplanes, and 40 different data fields of each target are chosen for imaging. Compared with the usual BP and RBF neural network algorithms, this method is good in recognition, and its discrimination can reach 97%.
出处 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2009年第3期21-26,共6页 Journal of Air Force Engineering University(Natural Science Edition)
基金 国家"863"计划资助项目(2006AAXX1307)
关键词 超分辨 ISAR成像 支持向量机 目标识别 分类 super - resolution ISAR imaging SVM target recognition classification
  • 相关文献

参考文献10

  • 1谢寿生.某型加力涡扇发动机[M].西安:空军工程学院出版社,2002.166-189.
  • 2高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1998..
  • 3Chapelle O,Vapnik V,Bacsquest O,et al.Choosing Multiple Parameters for Support Vector Machines[J].Machine Learning,2002,46(1):131-159.
  • 4Sebald D J,Buchlew J A.Support Vector Machines and the Multiple Hypothesis Test Problem[J].IEEE Trans On Signal Processing,2001,11(49):2865-2872.
  • 5Casaent D,Wang Y C.Automatic Target Recognition Using New Support Vector Machine[C]//Proceeding of International Joint Conference on Neural Network Montreal.Canada:[s.n.],2005:1472-1475.
  • 6边肇祺 张学工.模式识别[M].北京:清华大学出版社,2004..
  • 7郭雷,肖怀铁,付强.一种基于SVM的多目标模糊识别方法[J].雷达科学与技术,2004,2(3):142-146. 被引量:2
  • 8Xian Da Zhang,Yu Shi,Zheng Bao.A New Feature Vector Using Selected Bispectra for Signal Classification with Application in Radar Target Recognition[J].IEEE Trans on SP,2001,49(9):1875-1885.
  • 9Mike Bryant,Fred Garber.SVM Classifier Applied to the MSTAR Public Data Set[C]//Florida:SPIE,2005:355-360.
  • 10Qun Zhao,Jose Principe C-Support Vector Machines for SAR Automatic Target Recognition[J].IEEE Transactions on Aerospace and Electronic Systems,2001,37(2):643-654.

二级参考文献1

共引文献139

同被引文献3

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部