期刊文献+

基于运动轨迹的机器人运动学逆解研究 被引量:4

A Study of the Inverse Kinematics of a Multi-joint Redundant Robot Based on its Moving Path
下载PDF
导出
摘要 以8自由度凿岩机械臂为研究对象,提出了一种基于运动轨迹的求解多关节冗余机器人运动学逆解方法。首先构建求解机械臂逆运动学问题的BP神经网络模型,然后采用贝叶斯方法,把机械臂各关节在运动轨迹上的转动或移动变化总和作为优化函数的另一个约束项,建立求解逆运动学的贝叶斯-BP网络模型,进行仿真试验。仿真试验证明:构造的贝叶斯-BP神经网络模型可克服BP网络无反馈连接,易陷于局部最少及训练次数少的缺点;该方法在求解位于连续轨迹上的多个工作点的逆运动学问题时,求解的机械臂各关节转动或移动变化平缓,而且逆运动学求解精度可满足控制要求。 For studying the inverse kinematics of an 8-DOF drilling robot, a Bayesian-BP neural network model is presented to solve the multi-joint redundant robot inverse kinematics in a continuous path. First, a BP neural net- work model is constructed to solve the problem of robot inverse kinematics, and then the Bayzain method is adopted to construct the optimization function, in which the influence of the sum rotation or moving changes per joint is in- cluded. Finally the Bayesian-BP network model is built for the inverse kinematics of an 8-DOF drilling robot. The simulation shows that the Bayesian-BP neural network model can overcome the shortcomings of a BP neural net- work, such as no feedback or more training numbers. Rotations or moving changes per joint are smooth in the multiple working points of the robot continuous path, and the calculation precision can meet with the requirement of real time control.
出处 《机械科学与技术》 CSCD 北大核心 2009年第7期862-866,共5页 Mechanical Science and Technology for Aerospace Engineering
基金 湖南省自然科学基金项目(06JJ5099)资助
关键词 贝叶斯-BP神经网络 机器人 逆运动学 运动轨迹 Bayesian-BP neural network robot inverse kinematics moving path
  • 相关文献

参考文献7

  • 1王品,廖启征,魏世民.空间一般6R机械手的位置反解的新算法[J].机械科学与技术,2006,25(3):297-300. 被引量:2
  • 2汪木兰,徐开芸,饶华球,张思弟.基于改进型BP神经网络多关节机器人逆向运动学求解[J].南京航空航天大学学报,2006,38(B07):83-87. 被引量:7
  • 3Kalraa P, Mahapatrab P B, Aggarwalb D K. An evolutionary approach for solving the multimodal inverse kinematics problem of industrial robots[J]. Mechanism and Machine Theory, 2006, 41(10) :1213 - 1229
  • 4Hasan Ali T, Hamouda A M S, Ismail N, Al-Assadi H M A A. An adaptive-learning algorithm to solve the inverse kinematics problem of a6 D. O. F serial robot manipulator[J]. Advances in Engineering Software, 2006,37(7) :432 -438
  • 5Hagan M T, Demuth H B. Neural Network Design[ M]. PWS Publishing Company, Boeton, 1996
  • 6魏东,张明廉,蒋志坚,孙明.基于贝叶斯方法的神经网络非线性模型辨识[J].计算机工程与应用,2005,41(11):5-8. 被引量:28
  • 7Taati B, Greenspan M, Gupta K. A dynamic load-balancing parallel search for enumerative robot path planning[ J]. Springer Science, 2006,47:55 -85

二级参考文献26

  • 1徐开芸,饶华球.多关节机器人实用通信系统的构建[J].机床与液压,2004,32(7):28-31. 被引量:8
  • 2徐开芸.NGR01型机器人运动学分析及软件设计[J].组合机床与自动化加工技术,2004(7):10-12. 被引量:7
  • 3汪木兰,张崇巍,饶华球,张思弟.多关节机器人通用体系结构的研究[J].机床与液压,2005,33(2):60-62. 被引量:12
  • 4汪木兰,张崇巍,谢震.通用型机器人关节控制器的研制[J].制造业自动化,2005,27(5):35-37. 被引量:10
  • 5廖启征 梁崇高 张启先.空间7R机构位移分析的新研究.机械工程学报,1986,22(3):1-9.
  • 6Moody J E.The Effective Number of Parameters:An Analysis of Generalization and Regularization in Nonlinear Learning Systems[C].In :Advances in Neural Information Processing Systems 4,San Mateo,1992:847~854.
  • 7MacKay D C.Bayesian Interpolation[J].Neural Computation, 1992 ;4(3):415~447.
  • 8Sharker T K et al. Some Mathematical Considerations in Dealing with the Inverse Problems[J].IEEE Trans AP,1981 ;29(3):373~379.
  • 9Foresee F D,Hagan M T.Gauss-Newton Approximation to Bayesian Learning[C].In :Proceedings of the International Conference on Neural Networks, Houston,Texas, 1997.
  • 10Bishop C M.Neural Networks for Pattern Recognition[M].London:Clarenolon Press, 1995.

共引文献34

同被引文献32

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部