期刊文献+

方腔双壁反向驱动流涡结构演化的数值模拟 被引量:2

Numerical Simulation of Vortex Structure Evolution in a Square Cavity with Two Opposite Moving Walls
下载PDF
导出
摘要 采用微分求积法计算分析了不同雷诺数的二维方腔驱动流涡结构特性。数值模拟着重研究了雷诺数从0.01到1000变化对方腔双壁反向驱动流涡结构演化的影响,给出了涡演化过程的流型图和分叉图。结果表明,当雷诺数接近0时,腔内流动呈现对称的涡结构流型;随着雷诺数增加,子涡的大小和中心位置发生变化,鞍点始终位于方腔的中心,腔内流动形成非对称的斜扭流型;当雷诺数增大到某一临界值后,单一大涡占住整个方腔,大涡的形状变得更圆;如果雷诺数继续增加,方腔左上角和右下角同时出现二级涡,大涡中心始终位于方腔中心不变。 The vortex structure of two dimensional square cavity driven flow at different Reynolds number was calculated by using differential quadrature method. The numerical simulation focuses on investigating the effects of Reynolds number ranging from 0. 01 to 1000 on vortex structure evolution of the flow in a square cavity with two opposite moving walls. The flow patterns and bifurcation diagrams were determined. The numerical results show that the flow in the cavity takes on the flow pattern of symmetric vortex structure when Reynolds number approaches O. With Reynolds number increasing, the sizes and center positions of the sub-eddies appear to be affected, whereas the saddle point is still located at the cavity centre, resulting in an asymmetric skewed flow pattern in the cavity. It observes that one large vortex occupies the entire cavity; the shape of the large vortex becomes more circular after a critical value of Reynolds number is exceeded. If Reynolds number is increased further, two secondary eddies emerge simultaneously on the upper left corner and the lower right corner. The centre of the large vortex is invariably located at the cavity centre.
出处 《力学季刊》 CSCD 北大核心 2009年第2期176-182,共7页 Chinese Quarterly of Mechanics
基金 云南省自然科学基金项目(2007A030M) 国家自然科学基金项目(50839002)
关键词 方腔驱动流 NAVIER-STOKES方程 涡结构 微分求积法 cavity driven flow Navier-Stokes equation vortex structure differential quadrature method
  • 相关文献

参考文献15

  • 1Shankar P N,Deshpande M D.Fluid mechanics in the driven cavity[J].Ann Rev Fluid Mech,2000,32:93-136.
  • 2Robert N M,Pavageau M,Rafailidis S,Schatzmann M.Study of line source characteristics for 2-D physical modeling of pollutant dispersion in street canyons[J].Journal of Wind Engineering and Industrial Aerodynamics,1996,62:37-56.
  • 3Ghia U,Ghia K N,Shin C T.High-Re solutions for incompressible flow using the Navier Stokes equations and a multi-grid method[J].J Comput Phys,1982,48:387-411.
  • 4Schreiber R,Keller H B.Driven cavity flows by efficient numerical techniques[J].J Comput Phys,1983,49:165-172.
  • 5Xu H,Zhang C,Barron R.Numerical simulation of cavity flows based on transformed equations[J].Applied Mathematics and Computation,2006,176:506-515.
  • 6Bruneau C H,Saad M.The 2D lid-driven cavity problem revisited[J].Computers & Fluids,2006,35:326-348.
  • 7Fairag F A.Analysis and finite element approximation of a Ladyzhenskaya model for viscous flow in stream-function form[J].Journal of Computational and Applied Mathematics,2007,206:374-391.
  • 8Cheng M,Hung K C.Vortex structure of steady flow in a rectangular cavity[J].Computers & Fluids,2006,35:1046-1062.
  • 9Gaskell P H,Savage M D,Summers J L,Thompson H M.Stokes flow in closed,rectangular domains[J].Applied Mathematical Modelling,1998,22:727-743.
  • 10Galaktionov O S,Meleshko V V,Peters G W M,Meijer H E H.Stokes flow in a rectangular with cylinder[J].Fluid Dynamics Research,1999,24:81-102.

二级参考文献26

  • 1张立翔,何士华.混流式水轮机叶片流激振动机理的数学描述[J].水动力学研究与进展(A辑),2004,19(5):585-592. 被引量:5
  • 2WEAVER DS, ZIADA S, AU-YANG MK, CHEN SS,PAIDOUSSIS M P and PETTIGREW M J. Flow-in-duced vibration in power and process plants components-progress and prospects[J]. ASME Journal of Pressure Vessel Technology, 2000, 122: 339-348.
  • 3MENEVEAU C and KATZ J. Scale-invariance and turbulence models for large-eddy simulation[J]. Annual Reviews Fluid Mechanics, 2000, 32: 1-32.
  • 4PIOMELLI U. Large-eddy and direct simulation of turbulent flows, a CFD Odyssey[R]. Report of Department of Mechanical Engineering, University of Maryland, USA, 2001.
  • 5MOIN P and MAHESH K. Direct numerical simulation: a tool in turbulence research[J]. Annual Review Fluid Mechanics, 1998, 30:539-578.
  • 6SOULI M. , OUAHSINE A and LEWIN L. ALE formulation for fluid structure interaction problems [J]Computer methods in applied mechanics and engineering, 2000,190: 659-675.
  • 7SARRATE J, HUERTA A and DONEA J. Arbitrary Lagrangian Eulerian formulation for fluid-rigid body interaction[J]. Computer Methods in Applied Mechanics and Engineering, 2001,190:3171-3188.
  • 8BELLMAN RE, KASHEF BGand CASTI J. Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations[J]. Journal of Computational Physics, 1972, 10: 40-52.
  • 9SHU C. Differential Quadrature and its Application in Engineering[M]. Springer, London, 2000.
  • 10BERT CW AND MaALIK M. Differential quadrarure method in computational mechanics: a review[J]. Applied Mechanics Review, 1996, 49: 1-28.

共引文献8

同被引文献30

  • 1张立翔,徐天茂,张洪明.振动边界耦合作用下基于微分求积法的三维不可压缩粘性流体的数值模拟[J].水动力学研究与进展(A辑),2005,20(2):196-206. 被引量:4
  • 2徐天茂,张立翔,何士华.基于微分求积法的三维非恒定、不可压N-S方程的数值计算模型[J].昆明理工大学学报(理工版),2005,30(4):63-68. 被引量:7
  • 3Aidum CN, Triantafillopoulos NG, Benson JD. Numerical Study of Viscous Flow in a Cavity [J]. Phys. Fluids A (S1070-6631), 1991, 3: 2081-2091.
  • 4Gaskell PH, Savage MD. Meniscus Roll Coating. In Liquid Film Coating [M]. New York, USA: Chapman & Hall, 1996: 573-597.
  • 5Helebrand H. Tape Casting. In Processing of Ceramics Part I [M]. Weinheim, Germany: VCR Publisher, 1996.
  • 6Downson D, Taylor CM. Cavitation in Bearing [J]. Ann. Rev. Fluid. Mech. (S0066-4189), 1979, 11: 132-143.
  • 7Harper JF, Wake GC. Stokes Flow between Parallel Plates due to a Transversely Moving End Wall [J]. IMA J. Appl. Math. (S0272~960), 1983, 30: 141-149.
  • 8Joseph DD, Sturges L. The Convergence of Biorthogonal Series for Biharmonic and Stokes Flow Edge Problems: Part II [J]. SIAM. J. Appl. Math. (S0036-1399), 1978, 34: 7-27.
  • 9hankar, PN. The Eddy Structure in Stokes Flow in a Cavity [J]. J. Fluid. Mech. (S0022-1120), 1993, 250: 371-383.
  • 10allmann U. Three-dimensional Vortex Structures and Vorticity Topology [J]. Fluid Dyn. Res. (S0169-5983) 1988, 3: 183-192.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部