期刊文献+

求解具有弹性接头桩基动力学大变形的微分-代数方法 被引量:1

Differential-algebraic Approach for Solving Dynamic Large Deformation of Piles with Elastic Joints
下载PDF
导出
摘要 本文采用弧坐标首先建立了求解具有弹性接头的桩基大变形分析的非线性动力学微分方程,其中,广义Winkler模型用来模拟土对桩基的抗力。其次,在空间域内应用微分求积单元法来离散非线性微分方程组,并给出了处理弹性接头处连接条件的微分求积单元公式,得到了时间域内的一组微分-代数方程,采用二阶向后差分来代替二阶时间导数离散微分-代数方程组,得到一组离散化的非线性代数方程,应用Newton-Raphson方法求解了该非线性代数方程组。最后给出了数值算例,得到了桩基在顶部处受到组合动载荷作用时的响应,考察了弹性接头的刚度、位置对桩基动力学行为的影响。 A set of dynamic differential equations of were first formulized by arc-coordinates, in which, soil resistance. The differential quadrature element large deformation analysis of piles with elastic joints a generalized Winkler model was used to simulate the method was applied to discretize the nonlinear differential equations in the spatial domain, and the differential quadrature element formulas were presented to deal with the discontinuity conditions at elastic joints. A set of nonlinear differential-algebra equations were obtained in the temporal domain. The second order backward differentiation scheme was applied to discretize the set of equations and a system of nonlinear algebraic equations were yielded. Newton-Raphson method was used to solve the set of discretization algebraic equations at each time step. Finally, the numerical examples were pressented and the dynamical responses of piles were analyzed under dynamic loads. The effects of rigidity and the position of elastic joints on the dynamical mechanical characteristics of piles were considered.
出处 《力学季刊》 CSCD 北大核心 2009年第2期183-190,共8页 Chinese Quarterly of Mechanics
基金 上海市浦江人才计划项目(07pj14073) 上海市重点学科建设项目(Y0103)的资助
关键词 桩基 弧坐标 大变形 弹性接头 微分求积单元法(DQEM) 微分-代数系统 pile arc coordinate large deformation elastic joint differential quadrature element method differential-algebra system
  • 相关文献

参考文献7

  • 1Miura F.Lessons from damage to pile foundation caused by past earthquake in japan and the necessity of nonlinear analyses of pile foundation[C].Proceedings of the 4Th international conference on nonlinear mechanics,Shanghai:Shanghai University Press,2002,109-115.
  • 2Miyasaka T.Study on the effectiveness of the high ductility aseismatic joint spliced pile subjected to liquefaction-induced large ground displacement[D].Doctor Thesis of Yamaguchi-University,1997 (in Japanese).
  • 3朱媛媛,三浦房纪,朱正佑.弹性地基上HDAJ接头桩的非线性稳定性分析[J].力学季刊,2005,26(2):216-223. 被引量:6
  • 4朱媛媛,胡育佳,三浦房纪.微分求积方法对于桩基大变形分析的应用[J].力学季刊,2007,28(2):310-319. 被引量:3
  • 5Bert C W,Malik M.Differential quadrature method in computational mechanics:a review[J].Applied Mechanics Reviews,1996,49:1-28.
  • 6Chen C N.The two-dimensional frames model of the differential quadrature element method[J].Computers & Structures,1997,62(3):555-571.
  • 7聂国隽,仲政.框架结构P-△效应分析的微分求积单元法[J].力学季刊,2004,25(2):195-200. 被引量:4

二级参考文献24

  • 1朱媛媛,三浦房纪,朱正佑.弹性地基上HDAJ接头桩的非线性稳定性分析[J].力学季刊,2005,26(2):216-223. 被引量:6
  • 2王鑫伟.微分求积法在结构力学中的应用[J].力学进展,1995,25(2):232-240. 被引量:90
  • 3陈惠发著 周绥平译.钢框架稳定设计[M].上海:上海世界图书出版公司,1999.232-241.
  • 4Striz A G, Chen W L, Bert C W. Static analysis of structures by the quadrature element method (QEM)[J]. Int. J. Solids Structures,1994, 30(20) :2807 - 2818.
  • 5Chen C N. The warping torsion bar model of the differential quadrature element method[J]. Computers & Structures, 1998, 66(2 - 3) :249 - 257.
  • 6Chen C N. The Timoshenko beam model of the differential quadrature element method[J]. Computational Mechanics, 1999,24:65 - 69.
  • 7Bert C W, Malik M. The differential quadrature method in computational mechanics: A review[J]. Appl Mech Rev, 1996, 49,1 - 28.
  • 8链川和郎著 王松涛译.结构的弹塑性稳定内[M].北京:中国建筑工业出版社,1992.42-86.
  • 9Novak M. Piles under dynamic loads [C]. Proceedings.. Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Sore Dynamics, 1991, 2433 - 2456.
  • 10Miyasaka T. Study on the effectiveness of the high ductility aseismatic joint spliced pile subjected to liquefaction-induced large ground displacement [D]. Doctor thesis of Yamaguchi-University, 1997 (in Japanese).

共引文献9

同被引文献20

  • 1聂国隽,仲政.变截面门式刚架结构分析的微分求积单元法[J].力学季刊,2005,26(2):198-203. 被引量:3
  • 2聂国隽,仲政.微分求积单元法在结构工程中的应用[J].力学季刊,2005,26(3):423-427. 被引量:12
  • 3RAO S S. The finite element method in engineering[M]. United Kingdom: Butterworth-Heinemann, 2004.
  • 4LONG Y Q, CEN S, LONG Z F. Advanced finite element method in structural engineering[M]. Beijing: Tsinghua University Press, 2009.
  • 5BORST R, CRISFIELD M A, REMMERS J C, et al. Non-linear finite element analysis of solids and structures[M]. England: John Wiley & Sons Ltd., Publication, 2012.
  • 6DU H, LIM M K, LIN R M. Application of generalized differential quadrature method to structural problems[J]. International Journal for Numerical Methods in Engineering, 1994,37:1881-1896.
  • 7KARAMI G, MALEKZADEH P. A new differential quadrature methodology for beam anlysis and associated differential quadrature element method[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(32):3509-3526.
  • 8HAN J B, LIEW K M. Static analysis of Mindlin plates: the differential quadrature element method (DQEM)[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 177(1-2):51-75.
  • 9HOSSEINI-HASHEMI S, AKHAVAN H, AKHAVAN H, et al. Differential quadrature analysis of functionally graded circular and annular sector plates on elastic foundation[J]. Materials and Design, 2010, 31(4): 1871-1880.
  • 10MANSOURI M H, SHARIYAT M. Thermal buckling predictions of three types of high-order theories for the heterogeneous orthotropic plates, using the new version of DQM[J]. Composite Structures, 2014, 113:40-55.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部