期刊文献+

滑动轴承磨损表面与磨粒信息映射模型研究 被引量:3

Research on Mapping Model Between Wear Debris and Worn Surfaces in Sliding Bearings
原文传递
导出
摘要 针对磨损监测过程中获得的大量参数之间存在冗余及关联影响自动识别这一问题,首先运用粗糙集理论和主元分析2种不同的数据约简方法对监测数据进行约简,然后采用支持向量机建立滑动轴承磨粒信息和磨损表面信息之间的映射关系识别器。应用示例表明建立的模型对识别滑动轴承的磨损表面信息和磨粒信息映射关系具有较好的效果。 Among the information on wear debris and worn surfaces during wear condition monitoring, many parameters are redundant and correlative which influences the implement of automatic recognition. In order to solve this issue, rough sets and principal components analysis (PCA) was firstly applied to reduce the amount of attributes of the information of wear debris and worn surfaces. Support vector machine (SVM) was then adopted to seek the mapping relationship recognizer between wear particles and worn surface information. The application example demonstrates that the developed recognizer is feasible to obtain the mapping relationship between worn surface features and wear debris information in sliding bearings.
出处 《武汉理工大学学报》 CAS CSCD 北大核心 2009年第12期123-126,共4页 Journal of Wuhan University of Technology
基金 教育部博士点新教师项目(20070497029)
关键词 滑动轴承 磨损 磨粒 粗糙集 主元分析 支持向量机 sliding bearings wear wear debris rough sets principal components analysis support vector machine
  • 相关文献

参考文献5

二级参考文献14

  • 1严新平,谢友柏,李晓峰,萧汉梁.一种柴油机磨损的预测模型与试验研究[J].摩擦学学报,1996,16(4):358-366. 被引量:13
  • 2瓦普尼克(美)著 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 3边肇祺 张学工等.模式识别:第2版[M].北京:清华大学出版社,1999.30.136.
  • 4Komorowski J, Pawlak Z, Polkowski L, et al. Rough Sets: A Tutorial.Rough Fuzzy Hybridization, Springer-Verlag, 1998.
  • 5Vesanto J, Alhoniemi E.Clustering of the Self-organizing Map.IEEE-NN, 2000, 11:586.
  • 6Jain A K, Murty M N, Flynn P J. Data Clustering: A Review. ACM Computing Surveys, 1999, 31:264-323.
  • 7曾黄麟.粗糙集理论及其应用-关于数据推理的新方法(修订版)[M].重庆:重庆大学出版社(第2版),1998..
  • 8Toms L A. Machinery Oil Analysi~methods, Automation & Benefits[M]. 2nd Edition. Virginia Beach: Coastal Skills Training, 1998.
  • 9Pawley J B. Handbook of Biological Confocal Microscopy[M]. 2nd Edition. New York: Plenum Press, 1999.
  • 10Peng Z, Kirk T B. Computer Image Analysis of Wear Particles in Three-dimensions for Machine Condition Monitoring[J].Wear, 1998,223: 157-166.

共引文献56

同被引文献39

  • 1续海峰.粘着磨损机理及其分析[J].机械管理开发,2007(S1):95-96. 被引量:29
  • 2程辉,朱昆泉.滚动轴承磨损故障的诊断[J].轴承,1989(5):51-56. 被引量:5
  • 3陈廷伟,王浩程.轴承钢钢领可修复性研究[J].纺织器材,2006,33(4):15-16. 被引量:1
  • 4李宝民,闫玉涛,徐成海.几种滑动轴承合金在油润滑条件下的磨损行为的研究[J].润滑与密封,2006,31(12):161-162. 被引量:4
  • 5谢友柏.摩擦学系统的系统工程[J].润滑与密封,1988,12(6):1-10.
  • 6赵春华.基于摩擦学与动力学的摩擦学系统状态描述方法研究[D].武汉:武汉理工大学,2006.
  • 7Newell G E. Oil Analysis-cost Effective Machine Condition Monitoring Technique[J]. Industry Lubricant Tribology, 1996,51(2): 119-124.
  • 8Peng Z, Kessissoglou N. An Integrated Approach to Fault Diagnosis of Machinery Using Wear Debris and Vibration Analysis[J]. Wear, 2003,36(7-12) : 1221-1231.
  • 9Ebersbach S, Peng Z, Kessissoglou N J. The Investigation of the Condition and Faults of a Spur Gearbox Using Vibration and Wear Debris Analysis Techniques [J]. Wear, 2006, 39(1-2):16-24.
  • 10Maru M M, Castillo R S, Padovese L R. Study of Solid Contamination in Ball Bearings Through Vibration and Wear Analyses[J]. Wear, 2007, 40(3):4aa-440.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部