期刊文献+

Melting Behaviour of Shell-symmetric Aluminum Nanoparticles: Molecular Dynamics Simulation

壳对称结构的金属铝纳米粒子熔化行为:分子动力学模拟研究
下载PDF
导出
摘要 Molecular dynamics simulations with embedded atom method potential were carried out for A1 nanoparticles of 561 atoms in three structures: icosahedron, decahedron, and truncated octahedron. The total potential energy and specific heat capacity were calculated to estimate the melting temperatures. The melting point is 540+10 K for the icosahedral structure, 500±10 K for the decahedral structure, and 520±10 K for the truncated octahedral structure. With the results of mean square displacement, the bond order parameters and radius of gyration are consistent with the variation of total potential energy and specific heat capacity. The relaxation time and stretching parameters in the Kohlraush-William-Watts relaxation law were obtained by fitting the mean square displacement. The results show that the relationship between the relaxation time and the temperatures is in agreement with standard Arrhenius relation in the high temperature range.
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2009年第3期215-222,339,共9页 化学物理学报(英文)
基金 This work was supported by the National Natural Science Foundation of China (No.20476004 and No.2087005) and the National Basic Research Program of China (No.2004CB719505). Computational resources were supported by the "Chemical Grid Project" of Beijing University of Chemical Technology.
关键词 Al nanoparticle Shell-symmetric structure Molecular dynamics simulation 金属铝纳米粒子 壳对称结构 分子动力学模拟
  • 相关文献

参考文献47

  • 1M. Haruta, Catal. Today 36, 153 (1997).
  • 2N. Toshima and T. Yonezawa, New J. Chem. 22, 1179 (1998).
  • 3J. Spadavecchia, P. Prete, N. Lovergine, L. Tapfer, and R. Rella, J. Phys. Chem. B 109, 17347 (2005).
  • 4Y. Q. Yang, Z. Y. Sun, S. F. Wang, and D. D. Dlott, J. Phys. Chem. B 107, 4485 (2003).
  • 5F. Baletto and R. Ferrando, Rev. Mod. Phys. 77, 371 (2005).
  • 6L. Armelao, D. Barreca, G. Bottaro, A. Gasparotto, S. Gross, C. Maragno, and E. Tondello, Coord. Chem. Rev. 250, 1294 (2006).
  • 7J. C. Weigle, C. C. Luhrs, C. K. Chen, W. L. Perry, J. T. Mang, M. B. Nemer, G. P. Lopez, and J. Phillips, J. Phys. Chem. B 108, 18601 (2004).
  • 8J. Q. Hu, Y. Zhang, B. Liu, J. X. Liu, H. H. Zhou, Y. F. Xu, Y. X. Jiang, Z. L. Yang, and Z. Q. Tian, J. Am. Chem. Soc. 126, 9470 (2004).
  • 9K. Dick, T. Dhanasekaran, Z. Y. Zhang, and D. Meisel, J. Am. Chem. Soc. 124, 2312 (2002).
  • 10T. Bachels, H. J. Guntherodt: and R. Schafer, Phys. Rev. Lett. 85, 1250 (2000).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部