期刊文献+

运用线性和非线性的方法预测烷基苯的沸点和摩尔体积(英文)

Prediction of boiling point and molar volume of alkylbenzenes by linear and nonlinear methods
原文传递
导出
摘要 本文中建立了几个定量的模型预测80个烷基苯的沸点和79个烷基苯的摩尔体积。每个烷基苯的结构用其分子式得到的6个数字编码来描述。把这6个数字编码作为描述符,运用多元线性回归,多元非线性回归和人工神经网络地方法来分别建立定量构效关系模型。模型具有很好的预测性。沸点的3个预测模型,RMS偏差都小于9℃,摩尔体积的3个预测模型的RMS偏差都小于6 cm^3·mol^(-1)。 Several quantitative models for the prediction of boiling point (BP) of 80 alkylbenzenes and the molar volume (MV) of 69 alkylbenzenes were developed in this study. Each alkylbenzene was described by a simple set of six numeric codes derived from its molecular formula. With these six numeric codes as input descriptors, multiple linear regression (MLR), nonlinear multivariable regression (NLMR) and artificial neural network (ANN) were applied to build the quantitative structure-property relationship (QSPR) models, respectively. The models show good prediction ability. For the three BP models, the root-mean-square (RMS) errors are less than 9℃; and for the three MV models, the RMS errors are less than 6 cm^3·mol^-1.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2009年第6期723-728,共6页 Computers and Applied Chemistry
基金 supported by the National Natural Science Foundationof China(20605003) National High Tech Project(2006AA02Z337) SRF for ROCS,and the“Special Funding for the Talent Enrollment”of Beijing University of Chemical Technology~~
关键词 多元线性回归 多元非线性回归 人工神经网络 烷基苯 沸点 摩尔体积 MLR (Multiple Linear Regression), NLMR (Nonlinear Multivariable Regression), ANN (artificial neural network), alkylbenzenes, boiling point,molar volume
  • 相关文献

参考文献1

二级参考文献7

  • 1Yao XJ, Zhang XY, Zhang RS, Liu MC, Hu ZD and Fan BT. Radial basis function neural network based QSPR for the prediction of critical pressures of substituted benzenes. Computers & Chemistry,2002, 26:159 - 169.
  • 2Chen JW, Xue XY, Schramm KW, Quan X, Yang FL and Kettrup A. Quantitative structure-property relationships for oetanol-air partition coefficients of polychlorinated naphthalenes, chlorobenzenes and p,p-DDT. Computational Biology and Chemistry, 2003, 27:165 -171.
  • 3Vapnik V. Statistical Learning Theory. New York:Wiley, 1998.
  • 4Richard M and Stephenson SM. Handbook of the thermodynamics of organic compounds. New York: Elsevier Science Publishing Co.lnc, 1987.
  • 5旷戈,赵素英,赵之山,王良恩.人工神经网络基团贡献法估算纯有机物的临界参数[J].计算机与应用化学,2001,18(4):396-399. 被引量:8
  • 6陈念贻,陆文聪.支持向量机算法在化学化工中的应用[J].计算机与应用化学,2002,19(6):673-676. 被引量:41
  • 7陆文聪,陈念贻,叶晨洲,李国正.支持向量机算法和软件ChemSVM介绍[J].计算机与应用化学,2002,19(6):697-702. 被引量:73

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部