期刊文献+

分子C_nX_4(n=28,40;X=H,F,Cl)的振动光谱的密度泛函理论研究(英文)

The computational vibrational spectrum of C_nX_4(n=28,40;X=H,F,Cl) with density function theory
原文传递
导出
摘要 本文中,首先证明了C_nX_4(n=28,40;X=H,F,Cl)分子最稳定的结构具有T_d对称性。利用密度泛函理论研究了C_nX_4的振动光谱。从频率分析中我们得到当修饰性的原子位于T_d对称性的C_(28)X_4和C_(40)X_4的势能面上的4个顶点时,分子的能量具有最低值。我们还将C_nH_4(n=28,40;X=H,F,Cl)和CX_4的振动光谱进行对比,得出笼的骨架振动。频率分析中具有最大波数的频率对应分子的笼骨架振动,所以对于C_(28)X_4(X=H,F,Cl)或C_(40)X_4(X=H,F,Cl)来说,修饰原子的改变对这个频率值基本上没有影响,但是碳笼骨架上碳原子数的改变对这个频率的影响非常大。 Herein, we demonstrate that the most stable structures of the C,X4 (n=28, 40 and X=H, F, Cl) molecule are of Td symmetry. The vibrational spectrum of the CnX4 have been studied by using the Density Function Theory. From the vibration frequency analysis the authors prove when the modifying atoms are located at the four tops of C28X4 and C40X4 potential surface with Td symmetry structure, the molecule energy is of the lowest value. By the comparison of vibration spectrum of CnX4 (n=28, 40; X=H, F, Cl) with those of CX4 ,the authors obtained the skeleton vibration. The maximal frequency corresponds to the molecule's skeleton vibration, so the change of the modifying atoms has basically little effect on this frequency as regard to C28X4 (X=H, F, Cl) or C40X4 (X=H, F, Cl), but the change of the numbers of carbon atoms on the carbon skeleton has very great effect on this frequency.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2009年第6期751-754,共4页 Computers and Applied Chemistry
基金 国家自然科学基金(10804066) 山西省自然科学基金(2009021005)
关键词 拉曼光谱 C28 C40 富勒烯衍生物 密度泛函理论 raman spectrum, C28, C40, fullerene derivatives, DFT
  • 相关文献

参考文献24

  • 1Kroteo HW, Heath JR, O'brien SC, Crurl RE. and Smalley RE. C60: Buckminsterfullerene. Nature, 1985, 318:162-163.
  • 2Rettl R, Chao I, Diederich F and Whetten RL. Isolation of C76, a chiral (D2) allotrope of carbon. Nature, 1991, 353: 149-153.
  • 3Diederich F, Ettlr R, Rubin Y, Whetten RL, Beck R, Alvarez M, Anz S, Sensharma D, Wudl F, Khemani KC and Kocha A. The higher fullerenes: isolation and characterization of C76, C84,C90, C94, C70 and Oxide of D5h-C70. Science, 1991,252:548-551.
  • 4O'brien SC, Health JR and Smalley RE. Photophysics of buckminsterfullerene and other carbon duster ions. J Chem Phys, 1988, 88: 220.
  • 5Guo T, Diener MD and Chai Y. Uranium stabilization of C28: a tetravalent fullerene. Science, 1992, 257:1661.
  • 6Sun J, Caltapnides S and Grutzmacher HF. Isomeric C24+ carbon cluster ions derived from perehlorocoronene. Reactions of carbon-cluster ions with pyridine. J Phys Chem A, 1998, 102: 2408.
  • 7Prinzbach H. Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20. Nature (London), 2000, 407:60.
  • 8Cote M, Grossman JC, Cohen ML and Louie SG. Electron-phonon interactions in solid C36. Phys Rev Lett, 1998, 81:8446.
  • 9Crespi VH. Simple estimate of electron-phonon coupling in small fullerenes. Phys Rev B, 1999, 60 ( 1 ): 100.
  • 10Breda N, Broglia RA and Colo G. C28: a possible room temperature organic superconductor. Phys Rev B, 2000, 62 (1):130.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部