期刊文献+

算子空间的原子性

Nuclearity of Operator Spaces
下载PDF
导出
摘要 研究了算子空间的原子性.证明了算子空间V是原子当且仅当V是正合且有限内射;V内的任意一个有限维算子子空间是原子当且仅当V是原子且V内任意有限维算子子空间是V的完全补。因此作为推论,得到了无限维算子空间V的任意有限维子空间是原子,则V是1-Hilbertian和1-齐次。 This paper studies the nuclearity for operator space V is nuclear if and only if V is operator spaces. The authors show that an exact and finitely injective, and also prove that every finite dimensional operator subspace in V is nuclear if and only if V is nuclear and every finite dimensional operator subspace in V is completely complement in V. As a corollary, it is obtained that if every finite dimensionM subspaee of an infinite dimensional operator space V is nuclear, then V is 1-Hilbertian and 1-homogeneous.
作者 董浙 陶继成
出处 《数学年刊(A辑)》 CSCD 北大核心 2009年第3期339-344,共6页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10871174) 浙江省自然科学基金(No.Y606144)资助的项目
关键词 算子空间 原子 内射 Operator space, Nuclear, Injective
  • 相关文献

参考文献9

  • 1Effros E. G., Junge M. and Ruan Z. J., Integral mapping and the principle of local reflexivity for non-commutative L1 spaces [J], Ann. of Math., 2000, 151:59-92.
  • 2Effros E. G., Ozawa N. and Ruan Z. J., On injectivity and nuclearity for operator spaces [J], Duke Math. Y., 2001, 110:489-521.
  • 3Kye S. H. and Ruan Z. -J., On the local lifting property for operator spaces [J], J. Funct. Anal., 1999, 168:355-379.
  • 4Pisier G., Exact operator spaces, recent advances in operator algebras [J], Asterisque Orlean, 1992, 232:159-186.
  • 5Effros E. G. and Ruan Z. J., Operator Spaces [M], London Mathematical Society Monographs, New Series, 23, New York: The Clarendon Press, Oxford University Press, 2000.
  • 6Pisier G., Introduction to Operator Space Theory [M], London Math. Soc. Lecture Notes Series, 294, Cambridge: Cambridge University Press, 2003.
  • 7Ruan Z. J., Subspaces of C^*-algebras [J], J. Funct. Anal., 1988, 76:217-230.
  • 8Pisier G., The Operator Hilbert Space OH, Complex Interpolation and Tensor Norms [M], Memoirs of Amer. Math. Soc., Rhode Island: Provdence, 1996, 122(585).
  • 9Oikhberg T., Completely complemented subspace problem [J], J. Operator Theory, 2000, 43:375-387.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部