期刊文献+

非饱和土化学-塑性耦合本构行为的数值模拟 被引量:7

Numerical simulation for chemo-plastic coupled constitutive behavior of partially saturated soils
下载PDF
导出
摘要 基于Hueckel提出的饱和黏土化学-塑性本构模型和Gallipoli提出的非饱和土弹塑性本构模型,提出了一个新的非饱和多孔介质的化学-塑性本构模型,并建立了该模型的隐式积分算法,算法中考虑了化学软化和非饱和吸力的影响。在已有的非饱和多孔介质有限元分析程序平台上进行了程序研发,对孔隙水中化学污染物浓度变化对非饱和土力学行为的影响进行数值模拟,使所研制的程序能够进行岩土工程问题的化学-力学耦合非线性分析。 This paper proposed a new chemo-plastic constitutive model for partially saturated soils on the basis of Hueckel's chemo-plastic model for saturated clays and Gallipoli's model for partially saturated soils. The implicit integration algorithm for this model is also presented. The chemical softening effect and variation of suction are taken into account in the present algorithm. The program code for the algorithm is developed based on the framework of finite element program for partially saturated porous media. The new program can be applied to numerical simulation for mechanical behavior of partially saturated soils with chemical pore fluid and chemo-mechanical coupled nonlinear analysis in geotechnical engineering problems.
作者 周雷 张洪武
出处 《岩土力学》 EI CAS CSCD 北大核心 2009年第7期2133-2140,共8页 Rock and Soil Mechanics
基金 国家自然科学基金(No10721062 No50679013 No90715037 No10728205 No10225212) 国家基础性发展规划项目(No2005CB321704)
关键词 化学塑性 隐式积分算法 化学软化 非饱和土 chemo-plasticity implicit integration algorithm chemical softening partially saturated soil
  • 相关文献

参考文献3

二级参考文献28

  • 1[1]Biot M A. General theory of three-dimensional consolidation. J Appl Phys, 1941, 12: 155-164
  • 2[2]Biot M A. Theory of propagation of elastic waves in fluid saturated porous solid. J Acoust Soc America, 1956, 28: 168-191
  • 3[3]Zienkiewicz O C, Chan A H C, Pastor M, Paul D K, Shiomi T. Static and dynamic behaviour of soils: a rational approach to quantitative solutions. Ⅰ-Fully Saturated Problems, Proc Royal Soc London, 1990, A 429:285-309
  • 4[4]Ehlers W, Volk W. On shear band localisation phenomena of fluid-saturated granular elasto-plastic porous solid materials accounting for fluid viscosity and micropolar solid rotation. Mechanics of Cohesive-Frictional Materials Structures, 1997, 2(4) :301-302
  • 5[5]Zienkiewicz O C, Xie Y M, Schrefler B A, Ledesma A, Bicanic N. Static and dynamic behaviour of soils: a rational approach to quantitative solutions, part Ⅱ: semi-saturated problems. Proc R Soc London, 1990, A429:311-321
  • 6[6]Li X, Zienkiewicz O C, Xie Y M. A numerical model for immiscible two-phase fluid flow in a porous medium and its time domain solution. Int J Numeri Meths Engng, 1990, 30:1195-1212
  • 7[7]Schrefler B A, Simoni L, Li X, Zienkiewicz O C. Mechnics of partially saturated porous media. In Desai C S and Gioda G(eds), Numerical Methods and Constitutive Modeling in Geomechanicsm Spring-Verlag, Wien, 1990, 169-209
  • 8[8]Zienkiewicz O C, Schrefler B A, Simoni L, Xie Y M, Zhan X Y. Two and three phase behaviour in soil dynamics. In wriggers P and Wagner W(eds), Spring-Verlag, Berlin, 1991, 103-136
  • 9[9]Meroi E A, Schrefler B A, Zienkiewicz O C. Large strain static and dynamic semisaturated soil behaviour. Int Journal for Numerical and Analytical Methods in Geomechanics, 1995, 19 : 81-106
  • 10[10]Morel-Seytoux H J, Billica J A. A two-phase numerical model for prediction of infiltration: applications to a Semi-infinite column. water resour Res, 1985, 21: 607-615

共引文献15

同被引文献118

引证文献7

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部