期刊文献+

基于深层土壤数据的多维分形成矿异常识别研究——以铜陵矿集区Cu元素为例 被引量:4

The study of metallogenic anomaly identification based on deep soil data with multifractal method——A case study of Cu element in Tongling ore clustering area
下载PDF
导出
摘要 以铜陵矿集区Cu元素为例,开展基于深层土壤数据的多维分形成矿异常识别研究。结果表明,在土壤采样密度相对较低、元素含量空间分布差异不大的情况下,多维分形克里格插值法较普通克里格插值法对于成矿异常的识别具有极大的优势。对于铜陵矿集区这类矿床开采、开发程度已较高,表层土壤元素分布主要受控于外源污染的老矿集区,基于深层土壤样品数据的多维分形克里格方法可以有效地进行成矿异常识别,服务于老矿集区的深部、外围隐伏矿床找矿。而对于空白研究区,无论是基于深层土壤数据还是表层土壤数据,多维分形克里格方法应同样有效。多维分形方法下土壤元素成矿预测的异常下限值确定尚无标准,文中采用元素含量-矿床数目累积频率的计算方法,基于该方法提取的成矿异常区域较好地识别出了绝大多数已知矿床,同时识别出了值得作进一步异常查证的空白异常区域。 In this paper, we take Cu element of Tongling ore clustering area as an example, and carry out the research on metallogenic anomaly identification with multifractal method, based on deep soil data. The results show that the Krige-multifractal interpolation method has tremendous advantage compared with the krige interpolation method when soil sampling density is relatively lower and spatial distribution of element content has little difference. For the kind of old ore clustering area, such as Tongling ore clustering area, which has a higher level of ore mining, and the spatial distribution of surface soil elements is mainly controlled by external pollution sources, the multifractal method that is based on deep soil data can identify anomalies efficiently and provide special services for deep and peripheral concealed ore prospecting in old ore.clustering area. Moreover, for the blank researching area, multifractal method works the same way whether it is based on surface or deep soil data. For the multifractal method, there is still no standard being set up to determine the threshold anomaly of metallogenic prognosis by the soil elements. This paper presents a calculation method using the cumulative frequency of elemental contents-number of deposits. The anomaly area obtained by this method can well identify the most of known deposits. Meanwhile, by this method some blank abnormal areas which are worthwhile to do further anomaly inspection have been identified.
出处 《地学前缘》 EI CAS CSCD 北大核心 2009年第4期335-343,共9页 Earth Science Frontiers
基金 安徽省科技攻关计划项目(08010302200) 安徽省优秀青年科技基金项目(08040106907 04045063)
关键词 CU 异常识别 多维分形 土壤 铜陵矿集区 Cu anomaly identification multifractal soil Tongling ore clustering area
  • 相关文献

参考文献10

二级参考文献137

共引文献182

同被引文献94

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部