期刊文献+

H_2O_2活化聚酰亚胺碳纳米纤维无纺布及其储电性能 被引量:2

H_2O_2-Activated Polyimide-Based Carbon Nanofiber Non-Woven Fabrics and Their Capacitances
下载PDF
导出
摘要 聚酰亚胺碳纳米纤维无纺布经双氧水在氮气氛中750℃活化,使其比表面积增大,从而改善其储电性能.通过透射电镜观察活性碳纳米纤维的尺寸、形貌和结构;采用次甲基蓝水溶液吸附法测定活化碳纳米纤维的比表面积;用CHI660B电化学工作站测定该活性碳纳米纤维电极的储电性能.结果显示:活化后碳纳米纤维具有更大的比表面积,表面粗糙,电极材料的储电性能随活化程度的提高而增大;聚酰亚胺碳纳米纤维电极具有良好的超级电容器特性,在1 mol/L的H2SO4电解液中,经6 h活化后的碳纳米纤维电极具有良好的电荷储存能力,比电容量达到174.2 F/g. The polyimide-based carbon nanofiber non-woven fabrics were activated at 750 ℃ with H2O2 in nitrogen atmosphere to increase their specific surface areas and their capacitances. Transmission electron microscope was used to observe the size, morphology, and structure of the activated polyimide-based carbon nanofibers. Methylene blue solution adsorption method was used to measure the specific surface area of the carbon nanofibers. CHI660B electrochemical workstation was used to characterize the chargestoring capacity of the polyimide-based carbon nanofiber electrodes in supercapacitor. Experimental resuits show that higher activating degree of the nanofibers results in higher specific surface area and a better capacitance performance of carbon nanofiber electrodes. The capacitance of 174.2 F/g was obtained after activation for 6 h when 1 mol/L H2SO4 was used as the electrolyte.
出处 《纳米技术与精密工程》 EI CAS CSCD 2009年第3期195-200,共6页 Nanotechnology and Precision Engineering
基金 国家科技部"973"前期研究专项资助项目(2004CCA04700)
关键词 聚酰亚胺碳纳米纤维无纺布 H2O2活化 超级电容器 循环伏安 比电容量 polyimide-based carbon nanofiber non-woven fabric activated with H2O2 supercapacitor cyclic vohammetry specific capacitance
  • 相关文献

参考文献11

二级参考文献56

共引文献90

同被引文献26

  • 1王素琴,赖垂林,李婷婷,郭乔辉,彭信文,陈飞,侯豪情.聚酰亚胺纳米纤维碳化及其储电性能研究[J].江西师范大学学报(自然科学版),2007,31(4):331-335. 被引量:2
  • 2Kuwabara A, Ozasa M, Shimokawa T, et al. Basic me- chanical properties of balloon-type TEEK-L polyimide foam and TEEK-L filled aramide-honeycomb core materials for sandwich structures [ J ]. Advanced Composite Materials, 2005,14 (4) : 343 -363.
  • 3Williams M K, Weiser E S, Brenner J R, et al. Aro- matic polyimide foams: factors that lead to high fire performance [ J]. Polymer Degradation and Stability, 2005,88 : 20-27.
  • 4Williams M K, Weiser E S, Nelson G L, et al. Foam / aerogel composite materials for thermal and acoustic insulation and cryogen storage [ P ]. US Patent : 7977411, 2011-07-12.
  • 5Martin M, Christian R, George V, et al. High tempera- ture multilayer insulation of the bepicolombo spacecraft - a de- sign at the edge of material capability [ C]//Proceedings of the 40th International Conference on Environmental Systems. Barcelo- na, Spain, 2010.
  • 6Ranzenberger C, Martin M, Christian R, et al. Ther- mal performance testing of the bepicolombo high-temperature MLI [ C]//Proceedings of the 40th International Conference on Envi- ronmental Systems. Barcelona, Spain, 2010.
  • 7Sato Ryoichi, Tsumiyama Tatsuo. Mutilayorfoam [ P ]. JP Patent :2007090588, 2007-04-12.
  • 8Hiasa Y, Tachikawa S, Ohnishi A, and et al. Thermal conductivity of polyimide foam from -100 to100°C [ C]//18th Eu- ropean Conference on Thermophysical Properties, Pau, France, 2008, 4 : 1607-1612.
  • 9Sumitaka T, Yuki M, Ryuichi T, et al. Performance e- valuation of new thermal insulation system with polyimide fFoams [C]// 41^thInternational Conference on Environmental Systems, Portland, Oregon: 2011.
  • 10Sumitaka T, Yuki M, Ryuichi T, et al. Study on com- bined conductive and radiative heat transfer in polyimide foam for space use [ C ]//Proceedings of the 9th Asian Thermophysical Properties Conference, Beijing, China, 2010.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部