期刊文献+

具比例依赖和时滞的非自治捕食系统的正周期解

Positive periodic solution to nonautonomous predator-prey system with ratio-dependence
下载PDF
导出
摘要 利用重合度理论中的延拓定理,研究了一类具比例依赖和在功能性反应过程中的具时滞现象的非自治捕食周期系统,获得了正周期解的存在性。 Using a continuation theorem based on coincidence degree theory, we investigated a nonautonomous predater-prey periodic system with ratio-dependence and time delay during the process of the functional response and obtained existence of positive periodic solution.
出处 《浙江科技学院学报》 CAS 2009年第2期81-84,共4页 Journal of Zhejiang University of Science and Technology
关键词 比例依赖 捕食者-食饵 周期解 时滞 重合度 ratio-dependent predator-prey periodic solution time delay coincidence degree
  • 相关文献

参考文献6

二级参考文献79

  • 1赵晓华,易奇志.PERMANENCE AND PERIODIC SOLUTION FOR NONAUTONOMOUS COMPETITION-PREDATOR SYSTEM WITH TYPE II FUNCTIONAL RESPONSE[J].Annals of Differential Equations,2003,19(3):464-473. 被引量:3
  • 2张少林,薛有才.一类阶段结构捕食系统的全局渐近稳定性[J].浙江科技学院学报,2005,17(2):81-83. 被引量:2
  • 3Arditi R and Ginzburg L R. Coupling in predator-prey dynamics: Ratio-dependent. J. Theoretical Biology, 1989, 139: 311-326.
  • 4Fan M and Wang K. Periodic solutions of a discrete time nonautonomous ratio-dependent predatorprey system. Math. Comput. Modelling, 2002, 35: 951-961.
  • 5Fan M and Kuang Y. Dynamics of a nonautonomous predator-prey system with BeddingtonDeAngelis functional response. J. Math. Anal. Appl., 2004, 295: 15-39.
  • 6Beddington J R. Mutrual interference between parasites or predator and its effect on searching efficiency. J. Animal Ecol., 1975, 44: 331-340.
  • 7Deangelis D L, Goldstein R A and O'lveill R V. A model for trophic interaction. Ecology, 1975, 56: 881-892.
  • 8Skalski G T and Gilliam J F. Functional responses with predatoar interference: Viable alternatives to the Holling type II models. Ecology, 2001, 82: 3083-3092.
  • 9Cantrell R S and Consner C. Spatial ecology via reaction-diffusion equations. Proc. Roy. Soc. Edinburgh Sec. 1996, A126: 147-272.
  • 10Cantrell R S and Consner C. On the dynamics of predator-prey models with Beddington-DeAngelis functional response. J. Math. Anal. Appl., 2001, 257: 206-222.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部