期刊文献+

涡轮叶片用GH4033高温低周疲劳特性实验研究

An experimental study on the low cycle fatigue behaviors of GH4033 for turbine laminae at elevated tempertures
下载PDF
导出
摘要 采用总应变控制方法,在INSTRON8032上对镍基高温合金GH4033在400、500、600、700℃温度下的疲劳行为进行了研究,用扫描电镜观察了疲劳断口.采用Manson-Coffin方程对实验结果进行了分析,得到了该材料的高温低周疲劳特性参数.从断口的扫描电镜照片中看出:高温疲劳失效断口的萌生区断裂机制为沿晶断裂,扩展区为沿晶和穿晶断裂的混合断裂,失稳断裂区为穿晶断裂. The fatigue behavior of GH4033 nickel-based alloy at 400. 500. 600 and 700℃ were studied with the total strain-controlled method on the INSTRON8032, and the fracture of fatigue was observed by SEM. The experimental results are analyzed with Manson-CotTm's law, The LCF parameters of this material at these temperatures are acquired. The results shown that the fracture characteristic of crack initiation zone is the trans-granular fracture, crack propagation zone is mixed by the inter-granular fracture and trans-granular fracture, and crack quick growth zone is the inter-granular fracture.
出处 《湖南文理学院学报(自然科学版)》 CAS 2009年第2期69-71,共3页 Journal of Hunan University of Arts and Science(Science and Technology)
基金 湖南省研究生创新基金资助(1343-74236000006)
关键词 GH4033 低周疲劳 应变控制 失效寿命 GH4033 low cycle fatigue strain control fail life
  • 相关文献

参考文献6

二级参考文献22

  • 1[3] UDOGUCHI T, WADA T. Thermal effect on low-cycle fatigue strength of steel. In: LITTLER D J eds. Thermal Stresses and Thermal Fatigue. London,1969.109-123.
  • 2[4] TARIS S, FUJINO M, HAJI T. Effect of mean temperature range on thermal fatigue strength of low carbon steel. J. Society Materials Science, Japan, 1973, 22:35.
  • 3[5] BEILING J, SLOT T. Effect of temperature and strain rate on low cycle fatigue resistance of AISI 304, 316 and 348 stainless steels. In: Fatigue at high temperature. ASTM STP 459. Lutharville-Timonium:1969:3-30.
  • 4[7] Engler-Pinto C C, Rezai-Aria F. Out-of-phase and in-phase thermo-mechanical fatigue behavior of IN738LC. Fatigue'96, 1996,2:831-836.
  • 5[9] JOOS R, ELZEY D M, ARZT E. Damage Mechanisms in an ODS-superalloy during isothermal and thermal-mechanical fatigue. In: BACHHELET E, BRUNETAUD R, COUTSOURADIS D eds. High temperature materials for power engineering. The Netherlands: Kluwer Academic, 1990,2,1173-1184.
  • 6[10] STRANGMAN T E. Thermal-mechanical fatigue life model for coated superalloy turbine components. Superalloys 1992. The Minerals Metals & Materials Society, 1992.795-804.
  • 7[11] REMY L. Fatigue life prediction under thermal-mechanical loading in a nickel-base superalloy. In: Thermo-mechanical fatigue behavior of materials, ASTM committee E9 on fatigue. ASTM STP 1186, 1993.3-16.
  • 8[12] CHATAIGNER E, FLRURY E, REMY L. Crack propagation and life prediction in a nickelbased superalloy under TMF conditions. In: BRESSERS J, REMY L eds. Proceedings of International symposium on fatigue under thermal and mechanical loading. The Netherlands: Kluwer Acadmic Publisher, 1995. 393-402.
  • 9[13] NEU R W, SEHITOGLU H. Thermomechanical fatigue, Oxidation and creep: Part II, Life Prediction. Metallurgical Transactions A, 1989. 20A(9): 1769-1783.
  • 10[14] SHEFFLER K.D. DOBLE GS.NASA-CR-121001,1973.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部