期刊文献+

ρ-混合样本下VaR样本分位数估计的Bahadur表示 被引量:1

Bahadur Representation of the Sample Quantile Estimator under ρ-mixing Sample
下载PDF
导出
摘要 利用ρ-混合样本的两个不等式,研究了ρ-混合序列情况下,风险度量VaR非参数估计的性质,给出了VaR样本分位数估计的Bahadur表示,即本文的定理1,并且根据定理1的结论,证明了VaR样本分位数估计的渐进正态性。 By using-mixing sample inequality, some nonparametric properties of the VaR risk measurement were researched undermixing sample. The Bahadur representation of the VaR sample quantiles estimation is obtained, namely Theorem 1.And according to the result of Theorem 1, the asymptotic normality of the VaR sample quantile estimation is proved.
作者 周慧 曾箫潇
出处 《柳州师专学报》 2009年第3期118-122,共5页 Journal of Liuzhou Teachers College
关键词 Ρ-混合 VAR BAHADUR表示 渐进正态性 mixing VaR Bahadur representation asymptotic normality
  • 相关文献

参考文献9

  • 1Dowd,K..Estimating VaR with Order Statistics[J].Journal of Derivatives,2001:23-30.
  • 2Bahadur,R R.A note on quantiles in large samples[J].Ann.Math.Statist.,1966 (37):577-580.
  • 3Hall,P.Bahadur representation for uniform resampling and importance sampling,with applications to asymptotic relative effciency[J].Ann.Statist.,1991(19):1062-1072.
  • 4Bradley,R.C.Every "lower psi-mixing" Markov chain is "interlaced rho-mixing"[J].Stochastic Process.Appl.,1997,(72):221-239.
  • 5Shao,Q M.Maximal Inequalities for Partial Sums of ρ Mixing Sequences[J].The Annals of Probability,1995,(23):948-965.
  • 6Kolmogorov,A N and Rozanov,Y A.On Strong Mixing Conditions for Stationary Gaussian Processes[J].Theory probab.Appl,1960,(45):283-294.
  • 7Yoshihara,K.The Babadur representation of sample quantiles for sequences of strongly mixing random variables[J].Statist.Prob.Letters,1995,(24):299-304.
  • 8Bosq D.Nonpapametric Statistics for Stochastic Processes[M].Heidelberg:Spinger-Verlag,1998:15-20.
  • 9Yokoyama R.Moment Bounds for Stationany mixing sequences[J].Probability Theory and Related Fields,1980(52):45 -87.

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部