期刊文献+

改进协同粒子群优化算法及其在FlowShop调度中的应用 被引量:10

An Improved Cooperative Particle Swarm Optimization and Its Application to Flow Shop Scheduling Problem
下载PDF
导出
摘要 针对协同粒子群优化算法存在的停滞现象,提出了一种改进的协同粒子群优化算法。采用优化法的子群协作方式,既保证了收敛速率,又可以防止陷入局部最优。同时引入综合学习策略,增加种群的多样性,防止种群出现停滞现象。在此基础上,又加入了扰动机制,进一步避免算法陷入局部最优。采用该算法对3个经典函数进行测试,并将其应用于Flow Shop调度问题,仿真实验结果表明:新算法有效克服了停滞现象,增强了全局搜索能力,比基本协同粒子群优化算法的优化性能更好。 Aiming at the stagnation problem of the cooperative particle swarm optimization, this paper presents an improved cooperative particle swarm optimization. This proposed method adopts the cooperation principle of optimization algorithm, so it not only ensures the convergence rate, but also avoids plunging into local optimum. Moreover, both comprehensive learning and disturbing mechanism are introduced to strengthen the diversity of population and avoid the stagnation and plunging into local optimum. The new algorithm is tested by three typical functions and the flow shop scheduling problems, respectively. The simulation results show that the proposed algorithm can avoid the stagnation, improve the global convergence ability, and attain better optimization performance.
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第3期468-474,共7页 Journal of East China University of Science and Technology
基金 国家自然科学基金(60774078) 上海市教育委员会重点科研项目(05ZZ73) 上海市自然科学基金(08ZR1408500)
关键词 粒子群优化算法 协同 优化 FlowShop调度 particle swarm optimization cooperative optimization Flow Shop scheduling
  • 相关文献

参考文献11

  • 1Kennedy J,Eberhart R. Particle swarm optimization [C]// IEEE Int Conf on Nural Networks. Perth, Austrlia: IEEE Service Centre, 1995:1942-1948.
  • 2Eberhart R C,Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization [C]//Proeeedings of the IEEE Congress on Evolutionary Computation. California : IEEE Service Centre, 2000 : 84-88.
  • 3Zhang Hong, Li Xiaodong,Li Heng. Particle swarm optimization-based schemes for resource-constrained project scheduling [J]. Automation in Construction, 2005,14(3) : 393-404.
  • 4Lian Zhigang, Gu Xingsheng, Jiao Bin. A dual similar particle swarm optimization algorithm for job-shop scheduling with penalty [C]//Proceedings of the World Congress on Intelligent Control and Automation(WCICA). Dalian,China:IEEE Service Centre,2006 : 7312-7316.
  • 5Zhu Jin, Gu Xingsheng, Jiao Bin. An improved particle swarm optimization algorithm for short-term seheduling of single-stage multiproduet batch plants with parallel lines [C]//Proceedings of the International Conference on Bioinspired Computing Theory and Applications. Wuhan,China: Watam Press, 2006 : 18-22.
  • 6Zwe-Lee G. A particle swarm optimization approach for optimum design of PID controller in AVR system [J]. IEEE Transactions on Energy Conversion, 2004,19(2) :384-391.
  • 7Van den Bergh F, Engelbrecht A P. Training product unit networks using cooperative particle swarm optimizers [C]// Proceedings of the Third Genetic and Evolutionary Computation Conference (GECCO). San Francisco, USA: Morgan Kaufmann, 2001 :126-131.
  • 8Van den Bergh F,Engelbrecht A P. Effects of swarm size on cooperative particle swarm optimizers [C]//Proceedings of the GECCO. San Francisco, USA: Morgan Kaufmann, 2001 : 892-899.
  • 9Potter M A. The design and analysis of a computational model o[ cooperative coevolution [D]. Washington, DC: George Mason University, 1997.
  • 10Liang J J, Qin A K, Suganthan P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Transactions on Evolutionary Computation, 2006,10:281-295.

同被引文献96

引证文献10

二级引证文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部