期刊文献+

贝叶斯最小二乘支持向量机在大坝监测自动化数据验证中的应用

Application of BLS-SVM to Dam Safety Monitoring Data Validation
原文传递
导出
摘要 从体系结构、硬件构成、网络结构和软件设计等几个方面来看,大坝监测自动化系统采集的数据会失真,针对以往监测数据验证方法存在的缺陷,提出了基于相空间重构和贝叶斯框架最小二乘支持向量机(BLS-SVM)相结合的监测物理量数据验证方法。采用LS-SVM构建了3种预测器,应用于单监测物理量和多监测物理量输出系统。实例结果证明了所提出的方案的有效性。 From the architecture, hardware, network architecture and software design, the data acquired is to be distorted. In view of the liraitation of previous data validation method, a new monitoring data validation method is proposed based on phase space restructuring and Bayesian least square support vector machines (BLS-SVM). LS-SVM is used to construct three kinds of predictors which are applied to single variable and multi-variable output system. Experimental results show that the validation method is valid.
出处 《水电自动化与大坝监测》 2009年第3期46-50,共5页 HYDROPOWER AUTOMATION AND DAM MONITORING
关键词 大坝安全监测 数据验证 贝叶斯框架 最小二乘支持向量机 dam safety monitoring data validation Bayesian framework least squares support vector machines (LS-SVM)
  • 相关文献

参考文献8

  • 1朱伯芳.关于混凝土坝的几个新理念[J].水利学报,2008,39(10):1151-1157. 被引量:4
  • 2朱伟宾.大坝监测分析中的时间序列叠合模型[J].水电自动化与大坝监测,2006,30(5):52-55. 被引量:2
  • 3SUYKENS J A K, BRABANTER J, et al. machines. River Edge, 2000. VAN GESTEL T, DE Least squares support vector NJ, USA: World Scientific,
  • 4SCHOLKOPF B, BURGES C, SMOLA A. Advances in kernel methods: support vector learning. Cambridge, MA, USA: MIT Press, 1998.
  • 5VAN GESTEL T, SUYKENS J A K, LANCKRIET G, et al. Bayesian framework for least squares support vector machine classifiers, Gaussian processes and kernel Fisher diseriminant analysis. Neural Computation, 2002, 15(5) : 1115-1148.
  • 6VAN GESTEL T, SUYKENS J A K, DE MOOR B, et al. Bayesian inference for LS-SVMs on large data sets using the Nystrom method// Proceedings of International Joint Conference on Neural Networks (IJCNN'02): Vol 3, May 12-17, 2002, Honolulu, HI, USA. Piscataway, NJ, USA: IEEE, 2002.. 2779-2784.
  • 7CAO Liangyue. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D, 1997, 110(1/2).- 43-50.
  • 8高永刚,岳建平,石杏喜.支持向量机在变形监测数据处理中的应用[J].水电自动化与大坝监测,2005,29(5):36-39. 被引量:17

二级参考文献16

  • 1SL319-2005,混凝土重力坝设计规范[S].
  • 2SL282-2003.混凝土拱坝设计规范[S].[S].,..
  • 3DL5073-1997.水工建筑物抗震设计规范[S].[S].,..
  • 4PLATT J C. Sequertial Minimal Optimization: A Fast Algorithm for Training Support Vector Machines.Technical Report, 1998.
  • 5WANG Jia-qi, TAO Qing, WANG Jue. Kernel Projection Algorithm for Large - scale SVM Problems.Journal of Computer Science & Technology, 2002, 17(5): 556-564.
  • 6王炜炘.应用时间序列分析.南宁:广西师范大学出版社,1998.
  • 7朱伯芳.论混凝土坝的抗地震问题.水利水电技术,1963,(3):17-29.
  • 8陈厚群.混凝土坝的抗震[A].水利水电科技进展[C].第二册,北京:电力工业出版社,1981.
  • 9朱伯芳,张国新,郑璀莹,贾金生.混凝土坝运行期安全评估与全坝全过程有限元仿真分析[J].大坝与安全,2007,21(6):9-12. 被引量:14
  • 10朱伯芳.混凝土坝的数字监控[J].水利水电技术,2008,39(2):15-18. 被引量:55

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部